Loading…

In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography

A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a micr...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-10, Vol.21 (20), p.6800
Main Authors: Hu, Jizhou, Qu, Hemi, Pang, Wei, Duan, Xuexin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-e4474cd51ae7b83f2309c42b70d2d46a88aac95b269f65fc92edb5128005dbe73
cites cdi_FETCH-LOGICAL-c446t-e4474cd51ae7b83f2309c42b70d2d46a88aac95b269f65fc92edb5128005dbe73
container_end_page
container_issue 20
container_start_page 6800
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Hu, Jizhou
Qu, Hemi
Pang, Wei
Duan, Xuexin
description A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only 15 mm × 15 mm × 1 mm. The device with polymer coating showed satisfactory performance in the detection of organophosphorus compound, demonstrating a very low detection limit (a dozen parts per billion) with relatively short response time (about fifteen seconds) toward the simulant of chemical warfare agent, dimethyl methylphosphonate. The in-line detection of the mFBAR sensor with FID was constructed and employed to directly measure the concentration profile on the solid surface by the mFBAR with the controlled concentration profile in the mobile phase at the same time. The difference of peak-maximum position between mobile phase and solid phase could be a convenient indicator to measure mass transfer rate. With the response of the mFBAR and FID obtained in one injection, an injection mass-independent parameter can be calculated and used to identify the analyte of interest.
doi_str_mv 10.3390/s21206800
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0d2e14e5ce4744069a0cd9eb1218b57d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0d2e14e5ce4744069a0cd9eb1218b57d</doaj_id><sourcerecordid>2584518989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-e4474cd51ae7b83f2309c42b70d2d46a88aac95b269f65fc92edb5128005dbe73</originalsourceid><addsrcrecordid>eNpdkktvEzEQx1cIREvhwDdYiQscFvxe-4JUApRIQUg8xNHyYzZx2NipvVvUb49DoopymhnPXz_Pq2meY_SaUoXeFIIJEhKhB805ZoR1khD08B__rHlSyhYhQimVj5szyoQSCNPzxi5jtwoR2vcwgZtCiu3vMG3az8HlNIxz8MG17-bxV3vp0lymGv00N9B-hZKimVJur0xpv0Es1R1O4WKT064m19nsN7dPm0eDGQs8O9mL5sfHD98Xn7rVl6vl4nLVOcbE1AFjPXOeYwO9lXQgFCnHiO2RJ54JI6UxTnFLhBoEH5wi4C3HpLbNvYWeXjTLI9cns9X7HHYm3-pkgv77kPJam1wbGEFXJGAG3EH9kyGhDHJegcUES8t7X1lvj6z9bHfgHcQpm_Ee9H4mho1epxstOUOkpxXw8gTI6XqGMuldKA7G0USoc9SES8GYIvhQ94v_pNs051hHdVAxjqWSqqpeHVV1L6VkGO6KwUgfrkDfXQH9A6HhoqU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584518989</pqid></control><display><type>article</type><title>In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hu, Jizhou ; Qu, Hemi ; Pang, Wei ; Duan, Xuexin</creator><creatorcontrib>Hu, Jizhou ; Qu, Hemi ; Pang, Wei ; Duan, Xuexin</creatorcontrib><description>A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only 15 mm × 15 mm × 1 mm. The device with polymer coating showed satisfactory performance in the detection of organophosphorus compound, demonstrating a very low detection limit (a dozen parts per billion) with relatively short response time (about fifteen seconds) toward the simulant of chemical warfare agent, dimethyl methylphosphonate. The in-line detection of the mFBAR sensor with FID was constructed and employed to directly measure the concentration profile on the solid surface by the mFBAR with the controlled concentration profile in the mobile phase at the same time. The difference of peak-maximum position between mobile phase and solid phase could be a convenient indicator to measure mass transfer rate. With the response of the mFBAR and FID obtained in one injection, an injection mass-independent parameter can be calculated and used to identify the analyte of interest.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21206800</identifier><identifier>PMID: 34696013</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acoustic waves ; Acoustics ; Adsorption ; bulk acoustic wave resonator ; Chemical vapor deposition ; Chemical warfare ; Chromatography ; Electrodes ; Experiments ; Gas chromatography ; Gas sensors ; in-line detection ; Microelectromechanical systems ; microfluidic channel ; Microfluidics ; Motion pictures ; multi-dimensional gas chromatography ; Organophosphorus compounds ; Performance evaluation ; Polymer coatings ; Position indicators ; Resonators ; Response time ; Sensors ; Solid phases ; Solid surfaces</subject><ispartof>Sensors (Basel, Switzerland), 2021-10, Vol.21 (20), p.6800</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-e4474cd51ae7b83f2309c42b70d2d46a88aac95b269f65fc92edb5128005dbe73</citedby><cites>FETCH-LOGICAL-c446t-e4474cd51ae7b83f2309c42b70d2d46a88aac95b269f65fc92edb5128005dbe73</cites><orcidid>0000-0002-7550-3951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584518989/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584518989?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Hu, Jizhou</creatorcontrib><creatorcontrib>Qu, Hemi</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Duan, Xuexin</creatorcontrib><title>In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography</title><title>Sensors (Basel, Switzerland)</title><description>A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only 15 mm × 15 mm × 1 mm. The device with polymer coating showed satisfactory performance in the detection of organophosphorus compound, demonstrating a very low detection limit (a dozen parts per billion) with relatively short response time (about fifteen seconds) toward the simulant of chemical warfare agent, dimethyl methylphosphonate. The in-line detection of the mFBAR sensor with FID was constructed and employed to directly measure the concentration profile on the solid surface by the mFBAR with the controlled concentration profile in the mobile phase at the same time. The difference of peak-maximum position between mobile phase and solid phase could be a convenient indicator to measure mass transfer rate. With the response of the mFBAR and FID obtained in one injection, an injection mass-independent parameter can be calculated and used to identify the analyte of interest.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Adsorption</subject><subject>bulk acoustic wave resonator</subject><subject>Chemical vapor deposition</subject><subject>Chemical warfare</subject><subject>Chromatography</subject><subject>Electrodes</subject><subject>Experiments</subject><subject>Gas chromatography</subject><subject>Gas sensors</subject><subject>in-line detection</subject><subject>Microelectromechanical systems</subject><subject>microfluidic channel</subject><subject>Microfluidics</subject><subject>Motion pictures</subject><subject>multi-dimensional gas chromatography</subject><subject>Organophosphorus compounds</subject><subject>Performance evaluation</subject><subject>Polymer coatings</subject><subject>Position indicators</subject><subject>Resonators</subject><subject>Response time</subject><subject>Sensors</subject><subject>Solid phases</subject><subject>Solid surfaces</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEQx1cIREvhwDdYiQscFvxe-4JUApRIQUg8xNHyYzZx2NipvVvUb49DoopymhnPXz_Pq2meY_SaUoXeFIIJEhKhB805ZoR1khD08B__rHlSyhYhQimVj5szyoQSCNPzxi5jtwoR2vcwgZtCiu3vMG3az8HlNIxz8MG17-bxV3vp0lymGv00N9B-hZKimVJur0xpv0Es1R1O4WKT064m19nsN7dPm0eDGQs8O9mL5sfHD98Xn7rVl6vl4nLVOcbE1AFjPXOeYwO9lXQgFCnHiO2RJ54JI6UxTnFLhBoEH5wi4C3HpLbNvYWeXjTLI9cns9X7HHYm3-pkgv77kPJam1wbGEFXJGAG3EH9kyGhDHJegcUES8t7X1lvj6z9bHfgHcQpm_Ee9H4mho1epxstOUOkpxXw8gTI6XqGMuldKA7G0USoc9SES8GYIvhQ94v_pNs051hHdVAxjqWSqqpeHVV1L6VkGO6KwUgfrkDfXQH9A6HhoqU</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Hu, Jizhou</creator><creator>Qu, Hemi</creator><creator>Pang, Wei</creator><creator>Duan, Xuexin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7550-3951</orcidid></search><sort><creationdate>20211013</creationdate><title>In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography</title><author>Hu, Jizhou ; Qu, Hemi ; Pang, Wei ; Duan, Xuexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-e4474cd51ae7b83f2309c42b70d2d46a88aac95b269f65fc92edb5128005dbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Adsorption</topic><topic>bulk acoustic wave resonator</topic><topic>Chemical vapor deposition</topic><topic>Chemical warfare</topic><topic>Chromatography</topic><topic>Electrodes</topic><topic>Experiments</topic><topic>Gas chromatography</topic><topic>Gas sensors</topic><topic>in-line detection</topic><topic>Microelectromechanical systems</topic><topic>microfluidic channel</topic><topic>Microfluidics</topic><topic>Motion pictures</topic><topic>multi-dimensional gas chromatography</topic><topic>Organophosphorus compounds</topic><topic>Performance evaluation</topic><topic>Polymer coatings</topic><topic>Position indicators</topic><topic>Resonators</topic><topic>Response time</topic><topic>Sensors</topic><topic>Solid phases</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jizhou</creatorcontrib><creatorcontrib>Qu, Hemi</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Duan, Xuexin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jizhou</au><au>Qu, Hemi</au><au>Pang, Wei</au><au>Duan, Xuexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-10-13</date><risdate>2021</risdate><volume>21</volume><issue>20</issue><spage>6800</spage><pages>6800-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only 15 mm × 15 mm × 1 mm. The device with polymer coating showed satisfactory performance in the detection of organophosphorus compound, demonstrating a very low detection limit (a dozen parts per billion) with relatively short response time (about fifteen seconds) toward the simulant of chemical warfare agent, dimethyl methylphosphonate. The in-line detection of the mFBAR sensor with FID was constructed and employed to directly measure the concentration profile on the solid surface by the mFBAR with the controlled concentration profile in the mobile phase at the same time. The difference of peak-maximum position between mobile phase and solid phase could be a convenient indicator to measure mass transfer rate. With the response of the mFBAR and FID obtained in one injection, an injection mass-independent parameter can be calculated and used to identify the analyte of interest.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34696013</pmid><doi>10.3390/s21206800</doi><orcidid>https://orcid.org/0000-0002-7550-3951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-10, Vol.21 (20), p.6800
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0d2e14e5ce4744069a0cd9eb1218b57d
source Publicly Available Content Database; PubMed Central
subjects Acoustic waves
Acoustics
Adsorption
bulk acoustic wave resonator
Chemical vapor deposition
Chemical warfare
Chromatography
Electrodes
Experiments
Gas chromatography
Gas sensors
in-line detection
Microelectromechanical systems
microfluidic channel
Microfluidics
Motion pictures
multi-dimensional gas chromatography
Organophosphorus compounds
Performance evaluation
Polymer coatings
Position indicators
Resonators
Response time
Sensors
Solid phases
Solid surfaces
title In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Line%20Detection%20with%20Microfluidic%20Bulk%20Acoustic%20Wave%20Resonator%20Gas%20Sensor%20for%20Gas%20Chromatography&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Hu,%20Jizhou&rft.date=2021-10-13&rft.volume=21&rft.issue=20&rft.spage=6800&rft.pages=6800-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21206800&rft_dat=%3Cproquest_doaj_%3E2584518989%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-e4474cd51ae7b83f2309c42b70d2d46a88aac95b269f65fc92edb5128005dbe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584518989&rft_id=info:pmid/34696013&rfr_iscdi=true