Loading…

Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction

More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-07, Vol.9 (14), p.2865
Main Authors: Jo, Kyungmin, Choi, Yuna, Choi, Jaesoon, Chung, Jong Woo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173
cites cdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173
container_end_page
container_issue 14
container_start_page 2865
container_title Applied sciences
container_volume 9
creator Jo, Kyungmin
Choi, Yuna
Choi, Jaesoon
Chung, Jong Woo
description More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).
doi_str_mv 10.3390/app9142865
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0d825f3f109d4885a6acd5d198612b5d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0d825f3f109d4885a6acd5d198612b5d</doaj_id><sourcerecordid>2426409732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</originalsourceid><addsrcrecordid>eNpNUdtOGzEQXaEigdK88AWWeEPa4tt67ccq9BIptChcXi3Hnk0dNuut7SXiE_jrLgkqzMsZjc6cM5eiOCP4C2MKX5q-V4RTKaqj4pTiWpSMk_rTh_ykmKa0wWMowiTBp8XLMqyGlNESTFve-S2gK8hgsw8dCg1amN7EkGzovUXzLuU4bKHLCfkOjZ0ho9shriE-o_vkuzWahe4ptMNru2nRLxjiHvIuxMeEdj7_QddhL_4wmoSIbiI4v7f7XBw3pk0wfcNJcf_9293sZ7n4_WM--7ooLRMkl7whglBeM5CKGKgE5iDFqiGsYivFa-qACSuNsmAA6lpRawBjp4jkzpGaTYr5QdcFs9F99FsTn3UwXu8LIa61idnbFjR2klYNawhWjktZGWGsqxxRchxhVblR6_yg1cfwd4CU9SYMcVw9acqp4FjVjI6siwPLjqdMEZr_rgTr18_p98-xf2kTjQE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426409732</pqid></control><display><type>article</type><title>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</title><source>Publicly Available Content Database</source><creator>Jo, Kyungmin ; Choi, Yuna ; Choi, Jaesoon ; Chung, Jong Woo</creator><creatorcontrib>Jo, Kyungmin ; Choi, Yuna ; Choi, Jaesoon ; Chung, Jong Woo</creatorcontrib><description>More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9142865</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; CNN ; Complications ; convolutional neural networks ; Frames (data processing) ; Frames per second ; Laparoscopy ; Medical instruments ; Neural networks ; Real time ; robot surgery ; Robotic surgery ; Surgeons ; Surgery ; Surgical apparatus &amp; instruments ; Surgical instruments ; tool detection ; YOLO</subject><ispartof>Applied sciences, 2019-07, Vol.9 (14), p.2865</ispartof><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</citedby><cites>FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</cites><orcidid>0000-0002-6817-618X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2426409732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2426409732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jo, Kyungmin</creatorcontrib><creatorcontrib>Choi, Yuna</creatorcontrib><creatorcontrib>Choi, Jaesoon</creatorcontrib><creatorcontrib>Chung, Jong Woo</creatorcontrib><title>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</title><title>Applied sciences</title><description>More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).</description><subject>Algorithms</subject><subject>CNN</subject><subject>Complications</subject><subject>convolutional neural networks</subject><subject>Frames (data processing)</subject><subject>Frames per second</subject><subject>Laparoscopy</subject><subject>Medical instruments</subject><subject>Neural networks</subject><subject>Real time</subject><subject>robot surgery</subject><subject>Robotic surgery</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>Surgical apparatus &amp; instruments</subject><subject>Surgical instruments</subject><subject>tool detection</subject><subject>YOLO</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtOGzEQXaEigdK88AWWeEPa4tt67ccq9BIptChcXi3Hnk0dNuut7SXiE_jrLgkqzMsZjc6cM5eiOCP4C2MKX5q-V4RTKaqj4pTiWpSMk_rTh_ykmKa0wWMowiTBp8XLMqyGlNESTFve-S2gK8hgsw8dCg1amN7EkGzovUXzLuU4bKHLCfkOjZ0ho9shriE-o_vkuzWahe4ptMNru2nRLxjiHvIuxMeEdj7_QddhL_4wmoSIbiI4v7f7XBw3pk0wfcNJcf_9293sZ7n4_WM--7ooLRMkl7whglBeM5CKGKgE5iDFqiGsYivFa-qACSuNsmAA6lpRawBjp4jkzpGaTYr5QdcFs9F99FsTn3UwXu8LIa61idnbFjR2klYNawhWjktZGWGsqxxRchxhVblR6_yg1cfwd4CU9SYMcVw9acqp4FjVjI6siwPLjqdMEZr_rgTr18_p98-xf2kTjQE</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Jo, Kyungmin</creator><creator>Choi, Yuna</creator><creator>Choi, Jaesoon</creator><creator>Chung, Jong Woo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6817-618X</orcidid></search><sort><creationdate>20190701</creationdate><title>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</title><author>Jo, Kyungmin ; Choi, Yuna ; Choi, Jaesoon ; Chung, Jong Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>CNN</topic><topic>Complications</topic><topic>convolutional neural networks</topic><topic>Frames (data processing)</topic><topic>Frames per second</topic><topic>Laparoscopy</topic><topic>Medical instruments</topic><topic>Neural networks</topic><topic>Real time</topic><topic>robot surgery</topic><topic>Robotic surgery</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>Surgical apparatus &amp; instruments</topic><topic>Surgical instruments</topic><topic>tool detection</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Kyungmin</creatorcontrib><creatorcontrib>Choi, Yuna</creatorcontrib><creatorcontrib>Choi, Jaesoon</creatorcontrib><creatorcontrib>Chung, Jong Woo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Kyungmin</au><au>Choi, Yuna</au><au>Choi, Jaesoon</au><au>Chung, Jong Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</atitle><jtitle>Applied sciences</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>14</issue><spage>2865</spage><pages>2865-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9142865</doi><orcidid>https://orcid.org/0000-0002-6817-618X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2019-07, Vol.9 (14), p.2865
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0d825f3f109d4885a6acd5d198612b5d
source Publicly Available Content Database
subjects Algorithms
CNN
Complications
convolutional neural networks
Frames (data processing)
Frames per second
Laparoscopy
Medical instruments
Neural networks
Real time
robot surgery
Robotic surgery
Surgeons
Surgery
Surgical apparatus & instruments
Surgical instruments
tool detection
YOLO
title Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Real-Time%20Detection%20of%20Laparoscopic%20Instruments%20in%20Robot%20Surgery%20Using%20Convolutional%20Neural%20Networks%20with%20Motion%20Vector%20Prediction&rft.jtitle=Applied%20sciences&rft.au=Jo,%20Kyungmin&rft.date=2019-07-01&rft.volume=9&rft.issue=14&rft.spage=2865&rft.pages=2865-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9142865&rft_dat=%3Cproquest_doaj_%3E2426409732%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2426409732&rft_id=info:pmid/&rfr_iscdi=true