Loading…
Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction
More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-...
Saved in:
Published in: | Applied sciences 2019-07, Vol.9 (14), p.2865 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173 |
container_end_page | |
container_issue | 14 |
container_start_page | 2865 |
container_title | Applied sciences |
container_volume | 9 |
creator | Jo, Kyungmin Choi, Yuna Choi, Jaesoon Chung, Jong Woo |
description | More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS). |
doi_str_mv | 10.3390/app9142865 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0d825f3f109d4885a6acd5d198612b5d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0d825f3f109d4885a6acd5d198612b5d</doaj_id><sourcerecordid>2426409732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</originalsourceid><addsrcrecordid>eNpNUdtOGzEQXaEigdK88AWWeEPa4tt67ccq9BIptChcXi3Hnk0dNuut7SXiE_jrLgkqzMsZjc6cM5eiOCP4C2MKX5q-V4RTKaqj4pTiWpSMk_rTh_ykmKa0wWMowiTBp8XLMqyGlNESTFve-S2gK8hgsw8dCg1amN7EkGzovUXzLuU4bKHLCfkOjZ0ho9shriE-o_vkuzWahe4ptMNru2nRLxjiHvIuxMeEdj7_QddhL_4wmoSIbiI4v7f7XBw3pk0wfcNJcf_9293sZ7n4_WM--7ooLRMkl7whglBeM5CKGKgE5iDFqiGsYivFa-qACSuNsmAA6lpRawBjp4jkzpGaTYr5QdcFs9F99FsTn3UwXu8LIa61idnbFjR2klYNawhWjktZGWGsqxxRchxhVblR6_yg1cfwd4CU9SYMcVw9acqp4FjVjI6siwPLjqdMEZr_rgTr18_p98-xf2kTjQE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426409732</pqid></control><display><type>article</type><title>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</title><source>Publicly Available Content Database</source><creator>Jo, Kyungmin ; Choi, Yuna ; Choi, Jaesoon ; Chung, Jong Woo</creator><creatorcontrib>Jo, Kyungmin ; Choi, Yuna ; Choi, Jaesoon ; Chung, Jong Woo</creatorcontrib><description>More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9142865</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; CNN ; Complications ; convolutional neural networks ; Frames (data processing) ; Frames per second ; Laparoscopy ; Medical instruments ; Neural networks ; Real time ; robot surgery ; Robotic surgery ; Surgeons ; Surgery ; Surgical apparatus & instruments ; Surgical instruments ; tool detection ; YOLO</subject><ispartof>Applied sciences, 2019-07, Vol.9 (14), p.2865</ispartof><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</citedby><cites>FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</cites><orcidid>0000-0002-6817-618X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2426409732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2426409732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jo, Kyungmin</creatorcontrib><creatorcontrib>Choi, Yuna</creatorcontrib><creatorcontrib>Choi, Jaesoon</creatorcontrib><creatorcontrib>Chung, Jong Woo</creatorcontrib><title>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</title><title>Applied sciences</title><description>More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).</description><subject>Algorithms</subject><subject>CNN</subject><subject>Complications</subject><subject>convolutional neural networks</subject><subject>Frames (data processing)</subject><subject>Frames per second</subject><subject>Laparoscopy</subject><subject>Medical instruments</subject><subject>Neural networks</subject><subject>Real time</subject><subject>robot surgery</subject><subject>Robotic surgery</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>Surgical apparatus & instruments</subject><subject>Surgical instruments</subject><subject>tool detection</subject><subject>YOLO</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtOGzEQXaEigdK88AWWeEPa4tt67ccq9BIptChcXi3Hnk0dNuut7SXiE_jrLgkqzMsZjc6cM5eiOCP4C2MKX5q-V4RTKaqj4pTiWpSMk_rTh_ykmKa0wWMowiTBp8XLMqyGlNESTFve-S2gK8hgsw8dCg1amN7EkGzovUXzLuU4bKHLCfkOjZ0ho9shriE-o_vkuzWahe4ptMNru2nRLxjiHvIuxMeEdj7_QddhL_4wmoSIbiI4v7f7XBw3pk0wfcNJcf_9293sZ7n4_WM--7ooLRMkl7whglBeM5CKGKgE5iDFqiGsYivFa-qACSuNsmAA6lpRawBjp4jkzpGaTYr5QdcFs9F99FsTn3UwXu8LIa61idnbFjR2klYNawhWjktZGWGsqxxRchxhVblR6_yg1cfwd4CU9SYMcVw9acqp4FjVjI6siwPLjqdMEZr_rgTr18_p98-xf2kTjQE</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Jo, Kyungmin</creator><creator>Choi, Yuna</creator><creator>Choi, Jaesoon</creator><creator>Chung, Jong Woo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6817-618X</orcidid></search><sort><creationdate>20190701</creationdate><title>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</title><author>Jo, Kyungmin ; Choi, Yuna ; Choi, Jaesoon ; Chung, Jong Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>CNN</topic><topic>Complications</topic><topic>convolutional neural networks</topic><topic>Frames (data processing)</topic><topic>Frames per second</topic><topic>Laparoscopy</topic><topic>Medical instruments</topic><topic>Neural networks</topic><topic>Real time</topic><topic>robot surgery</topic><topic>Robotic surgery</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>Surgical apparatus & instruments</topic><topic>Surgical instruments</topic><topic>tool detection</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Kyungmin</creatorcontrib><creatorcontrib>Choi, Yuna</creatorcontrib><creatorcontrib>Choi, Jaesoon</creatorcontrib><creatorcontrib>Chung, Jong Woo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Kyungmin</au><au>Choi, Yuna</au><au>Choi, Jaesoon</au><au>Chung, Jong Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction</atitle><jtitle>Applied sciences</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>14</issue><spage>2865</spage><pages>2865-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9142865</doi><orcidid>https://orcid.org/0000-0002-6817-618X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2019-07, Vol.9 (14), p.2865 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0d825f3f109d4885a6acd5d198612b5d |
source | Publicly Available Content Database |
subjects | Algorithms CNN Complications convolutional neural networks Frames (data processing) Frames per second Laparoscopy Medical instruments Neural networks Real time robot surgery Robotic surgery Surgeons Surgery Surgical apparatus & instruments Surgical instruments tool detection YOLO |
title | Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Real-Time%20Detection%20of%20Laparoscopic%20Instruments%20in%20Robot%20Surgery%20Using%20Convolutional%20Neural%20Networks%20with%20Motion%20Vector%20Prediction&rft.jtitle=Applied%20sciences&rft.au=Jo,%20Kyungmin&rft.date=2019-07-01&rft.volume=9&rft.issue=14&rft.spage=2865&rft.pages=2865-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9142865&rft_dat=%3Cproquest_doaj_%3E2426409732%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-4f1612473e891ae5604e86bf1353b9472de36c8a9ceaee7792cae00d9184dd173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2426409732&rft_id=info:pmid/&rfr_iscdi=true |