Loading…

Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification

Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels i...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-03, Vol.23 (7), p.3515
Main Authors: Orozco, Jairo, Manian, Vidya, Alfaro, Estefania, Walia, Harkamal, Dhatt, Balpreet K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943
cites cdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943
container_end_page
container_issue 7
container_start_page 3515
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Orozco, Jairo
Manian, Vidya
Alfaro, Estefania
Walia, Harkamal
Dhatt, Balpreet K
description Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.
doi_str_mv 10.3390/s23073515
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0d84f4573a9f40f79e5ad7f3938955fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746948386</galeid><doaj_id>oai_doaj_org_article_0d84f4573a9f40f79e5ad7f3938955fe</doaj_id><sourcerecordid>A746948386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</originalsourceid><addsrcrecordid>eNpdksFuEzEQhlcIREvhwAsgS1zgkDJe2_H6hKII2kgBJKDn1cQ7Thw268XepPQ9eGAcEqIW-WDr9zf_eMZTFC85XAph4F0qBWihuHpUnHNZylFVlvD43vmseJbSGqAUQlRPizOhQYHS4rz4fRWxX7Fp6Hah3Q4-dNiyzzTchviD3STfLdmkwX7wO8qyX64WIa5CaNgc-xatx459wiH6X8yFyK7veoqpJzvEbDPb4JISu_XDik36vvUW9wnYENhXb4l9I2oOEJu2mJJ3R-J58cRhm-jFcb8obj5--D69Hs2_XM2mk_nIKjDDyCFprTg0lVRAEgVAQyjLxmgpBYfxQhrtODhaLLjUrhIVNVyjK4VU1khxUcwOvk3Add1Hv8F4Vwf09V8hxGWNcfC2pXqfxMncMjROgtOGFDbaCSMqo5Sj7PX-4NVvFxtqLHX7HjwwfXjT-VW9DLuaAxjDlcgOb44OMfzcUhrqjU-W2hY7CttUlxXAuFTc6Iy-_g9dh23MX5cpbYyuSgmQqcsDtcRcge9cyIltXg1tvA0dOZ_1iZZjI3Nvxjng7SHAxpBSJHd6Pod6P2n1adIy--p-vSfy32iJP-LqzzI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799782400</pqid></control><display><type>article</type><title>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Orozco, Jairo ; Manian, Vidya ; Alfaro, Estefania ; Walia, Harkamal ; Dhatt, Balpreet K</creator><creatorcontrib>Orozco, Jairo ; Manian, Vidya ; Alfaro, Estefania ; Walia, Harkamal ; Dhatt, Balpreet K</creatorcontrib><description>Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23073515</identifier><identifier>PMID: 37050573</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive algorithms ; adaptive neighborhood ; Agricultural production ; Algorithms ; Ambient temperature ; Classification ; Computer architecture ; Deep learning ; Eigenvectors ; graph convolutional network ; Graph neural networks ; Graph representations ; hyperspectral image classification ; Hyperspectral imaging ; hyperspectral rice seed images ; Image classification ; laplacian matrix ; Machine learning ; Methods ; Neighborhoods ; Neural networks ; Pixels ; Rice ; Seeds ; Spatial data ; Spectral signatures</subject><ispartof>Sensors (Basel, Switzerland), 2023-03, Vol.23 (7), p.3515</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</citedby><cites>FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</cites><orcidid>0000-0002-9712-5824 ; 0000-0003-3834-8857 ; 0000-0002-7986-7170 ; 0000-0002-3577-962X ; 0000-0001-5438-1177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2799782400/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2799782400?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37050573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orozco, Jairo</creatorcontrib><creatorcontrib>Manian, Vidya</creatorcontrib><creatorcontrib>Alfaro, Estefania</creatorcontrib><creatorcontrib>Walia, Harkamal</creatorcontrib><creatorcontrib>Dhatt, Balpreet K</creatorcontrib><title>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.</description><subject>Adaptive algorithms</subject><subject>adaptive neighborhood</subject><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Ambient temperature</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Eigenvectors</subject><subject>graph convolutional network</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>hyperspectral rice seed images</subject><subject>Image classification</subject><subject>laplacian matrix</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Rice</subject><subject>Seeds</subject><subject>Spatial data</subject><subject>Spectral signatures</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFuEzEQhlcIREvhwAsgS1zgkDJe2_H6hKII2kgBJKDn1cQ7Thw268XepPQ9eGAcEqIW-WDr9zf_eMZTFC85XAph4F0qBWihuHpUnHNZylFVlvD43vmseJbSGqAUQlRPizOhQYHS4rz4fRWxX7Fp6Hah3Q4-dNiyzzTchviD3STfLdmkwX7wO8qyX64WIa5CaNgc-xatx459wiH6X8yFyK7veoqpJzvEbDPb4JISu_XDik36vvUW9wnYENhXb4l9I2oOEJu2mJJ3R-J58cRhm-jFcb8obj5--D69Hs2_XM2mk_nIKjDDyCFprTg0lVRAEgVAQyjLxmgpBYfxQhrtODhaLLjUrhIVNVyjK4VU1khxUcwOvk3Add1Hv8F4Vwf09V8hxGWNcfC2pXqfxMncMjROgtOGFDbaCSMqo5Sj7PX-4NVvFxtqLHX7HjwwfXjT-VW9DLuaAxjDlcgOb44OMfzcUhrqjU-W2hY7CttUlxXAuFTc6Iy-_g9dh23MX5cpbYyuSgmQqcsDtcRcge9cyIltXg1tvA0dOZ_1iZZjI3Nvxjng7SHAxpBSJHd6Pod6P2n1adIy--p-vSfy32iJP-LqzzI</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Orozco, Jairo</creator><creator>Manian, Vidya</creator><creator>Alfaro, Estefania</creator><creator>Walia, Harkamal</creator><creator>Dhatt, Balpreet K</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9712-5824</orcidid><orcidid>https://orcid.org/0000-0003-3834-8857</orcidid><orcidid>https://orcid.org/0000-0002-7986-7170</orcidid><orcidid>https://orcid.org/0000-0002-3577-962X</orcidid><orcidid>https://orcid.org/0000-0001-5438-1177</orcidid></search><sort><creationdate>20230327</creationdate><title>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</title><author>Orozco, Jairo ; Manian, Vidya ; Alfaro, Estefania ; Walia, Harkamal ; Dhatt, Balpreet K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>adaptive neighborhood</topic><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Ambient temperature</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Eigenvectors</topic><topic>graph convolutional network</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>hyperspectral rice seed images</topic><topic>Image classification</topic><topic>laplacian matrix</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Rice</topic><topic>Seeds</topic><topic>Spatial data</topic><topic>Spectral signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orozco, Jairo</creatorcontrib><creatorcontrib>Manian, Vidya</creatorcontrib><creatorcontrib>Alfaro, Estefania</creatorcontrib><creatorcontrib>Walia, Harkamal</creatorcontrib><creatorcontrib>Dhatt, Balpreet K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orozco, Jairo</au><au>Manian, Vidya</au><au>Alfaro, Estefania</au><au>Walia, Harkamal</au><au>Dhatt, Balpreet K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-03-27</date><risdate>2023</risdate><volume>23</volume><issue>7</issue><spage>3515</spage><pages>3515-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37050573</pmid><doi>10.3390/s23073515</doi><orcidid>https://orcid.org/0000-0002-9712-5824</orcidid><orcidid>https://orcid.org/0000-0003-3834-8857</orcidid><orcidid>https://orcid.org/0000-0002-7986-7170</orcidid><orcidid>https://orcid.org/0000-0002-3577-962X</orcidid><orcidid>https://orcid.org/0000-0001-5438-1177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-03, Vol.23 (7), p.3515
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0d84f4573a9f40f79e5ad7f3938955fe
source PubMed (Medline); Publicly Available Content Database
subjects Adaptive algorithms
adaptive neighborhood
Agricultural production
Algorithms
Ambient temperature
Classification
Computer architecture
Deep learning
Eigenvectors
graph convolutional network
Graph neural networks
Graph representations
hyperspectral image classification
Hyperspectral imaging
hyperspectral rice seed images
Image classification
laplacian matrix
Machine learning
Methods
Neighborhoods
Neural networks
Pixels
Rice
Seeds
Spatial data
Spectral signatures
title Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Convolutional%20Network%20Using%20Adaptive%20Neighborhood%20Laplacian%20Matrix%20for%20Hyperspectral%20Images%20with%20Application%20to%20Rice%20Seed%20Image%20Classification&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Orozco,%20Jairo&rft.date=2023-03-27&rft.volume=23&rft.issue=7&rft.spage=3515&rft.pages=3515-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23073515&rft_dat=%3Cgale_doaj_%3EA746948386%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799782400&rft_id=info:pmid/37050573&rft_galeid=A746948386&rfr_iscdi=true