Loading…
Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels i...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-03, Vol.23 (7), p.3515 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943 |
container_end_page | |
container_issue | 7 |
container_start_page | 3515 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Orozco, Jairo Manian, Vidya Alfaro, Estefania Walia, Harkamal Dhatt, Balpreet K |
description | Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments. |
doi_str_mv | 10.3390/s23073515 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0d84f4573a9f40f79e5ad7f3938955fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746948386</galeid><doaj_id>oai_doaj_org_article_0d84f4573a9f40f79e5ad7f3938955fe</doaj_id><sourcerecordid>A746948386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</originalsourceid><addsrcrecordid>eNpdksFuEzEQhlcIREvhwAsgS1zgkDJe2_H6hKII2kgBJKDn1cQ7Thw268XepPQ9eGAcEqIW-WDr9zf_eMZTFC85XAph4F0qBWihuHpUnHNZylFVlvD43vmseJbSGqAUQlRPizOhQYHS4rz4fRWxX7Fp6Hah3Q4-dNiyzzTchviD3STfLdmkwX7wO8qyX64WIa5CaNgc-xatx459wiH6X8yFyK7veoqpJzvEbDPb4JISu_XDik36vvUW9wnYENhXb4l9I2oOEJu2mJJ3R-J58cRhm-jFcb8obj5--D69Hs2_XM2mk_nIKjDDyCFprTg0lVRAEgVAQyjLxmgpBYfxQhrtODhaLLjUrhIVNVyjK4VU1khxUcwOvk3Add1Hv8F4Vwf09V8hxGWNcfC2pXqfxMncMjROgtOGFDbaCSMqo5Sj7PX-4NVvFxtqLHX7HjwwfXjT-VW9DLuaAxjDlcgOb44OMfzcUhrqjU-W2hY7CttUlxXAuFTc6Iy-_g9dh23MX5cpbYyuSgmQqcsDtcRcge9cyIltXg1tvA0dOZ_1iZZjI3Nvxjng7SHAxpBSJHd6Pod6P2n1adIy--p-vSfy32iJP-LqzzI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799782400</pqid></control><display><type>article</type><title>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Orozco, Jairo ; Manian, Vidya ; Alfaro, Estefania ; Walia, Harkamal ; Dhatt, Balpreet K</creator><creatorcontrib>Orozco, Jairo ; Manian, Vidya ; Alfaro, Estefania ; Walia, Harkamal ; Dhatt, Balpreet K</creatorcontrib><description>Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23073515</identifier><identifier>PMID: 37050573</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive algorithms ; adaptive neighborhood ; Agricultural production ; Algorithms ; Ambient temperature ; Classification ; Computer architecture ; Deep learning ; Eigenvectors ; graph convolutional network ; Graph neural networks ; Graph representations ; hyperspectral image classification ; Hyperspectral imaging ; hyperspectral rice seed images ; Image classification ; laplacian matrix ; Machine learning ; Methods ; Neighborhoods ; Neural networks ; Pixels ; Rice ; Seeds ; Spatial data ; Spectral signatures</subject><ispartof>Sensors (Basel, Switzerland), 2023-03, Vol.23 (7), p.3515</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</citedby><cites>FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</cites><orcidid>0000-0002-9712-5824 ; 0000-0003-3834-8857 ; 0000-0002-7986-7170 ; 0000-0002-3577-962X ; 0000-0001-5438-1177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2799782400/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2799782400?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37050573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orozco, Jairo</creatorcontrib><creatorcontrib>Manian, Vidya</creatorcontrib><creatorcontrib>Alfaro, Estefania</creatorcontrib><creatorcontrib>Walia, Harkamal</creatorcontrib><creatorcontrib>Dhatt, Balpreet K</creatorcontrib><title>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.</description><subject>Adaptive algorithms</subject><subject>adaptive neighborhood</subject><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Ambient temperature</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Eigenvectors</subject><subject>graph convolutional network</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>hyperspectral rice seed images</subject><subject>Image classification</subject><subject>laplacian matrix</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Rice</subject><subject>Seeds</subject><subject>Spatial data</subject><subject>Spectral signatures</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFuEzEQhlcIREvhwAsgS1zgkDJe2_H6hKII2kgBJKDn1cQ7Thw268XepPQ9eGAcEqIW-WDr9zf_eMZTFC85XAph4F0qBWihuHpUnHNZylFVlvD43vmseJbSGqAUQlRPizOhQYHS4rz4fRWxX7Fp6Hah3Q4-dNiyzzTchviD3STfLdmkwX7wO8qyX64WIa5CaNgc-xatx459wiH6X8yFyK7veoqpJzvEbDPb4JISu_XDik36vvUW9wnYENhXb4l9I2oOEJu2mJJ3R-J58cRhm-jFcb8obj5--D69Hs2_XM2mk_nIKjDDyCFprTg0lVRAEgVAQyjLxmgpBYfxQhrtODhaLLjUrhIVNVyjK4VU1khxUcwOvk3Add1Hv8F4Vwf09V8hxGWNcfC2pXqfxMncMjROgtOGFDbaCSMqo5Sj7PX-4NVvFxtqLHX7HjwwfXjT-VW9DLuaAxjDlcgOb44OMfzcUhrqjU-W2hY7CttUlxXAuFTc6Iy-_g9dh23MX5cpbYyuSgmQqcsDtcRcge9cyIltXg1tvA0dOZ_1iZZjI3Nvxjng7SHAxpBSJHd6Pod6P2n1adIy--p-vSfy32iJP-LqzzI</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Orozco, Jairo</creator><creator>Manian, Vidya</creator><creator>Alfaro, Estefania</creator><creator>Walia, Harkamal</creator><creator>Dhatt, Balpreet K</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9712-5824</orcidid><orcidid>https://orcid.org/0000-0003-3834-8857</orcidid><orcidid>https://orcid.org/0000-0002-7986-7170</orcidid><orcidid>https://orcid.org/0000-0002-3577-962X</orcidid><orcidid>https://orcid.org/0000-0001-5438-1177</orcidid></search><sort><creationdate>20230327</creationdate><title>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</title><author>Orozco, Jairo ; Manian, Vidya ; Alfaro, Estefania ; Walia, Harkamal ; Dhatt, Balpreet K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>adaptive neighborhood</topic><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Ambient temperature</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Eigenvectors</topic><topic>graph convolutional network</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>hyperspectral rice seed images</topic><topic>Image classification</topic><topic>laplacian matrix</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Rice</topic><topic>Seeds</topic><topic>Spatial data</topic><topic>Spectral signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orozco, Jairo</creatorcontrib><creatorcontrib>Manian, Vidya</creatorcontrib><creatorcontrib>Alfaro, Estefania</creatorcontrib><creatorcontrib>Walia, Harkamal</creatorcontrib><creatorcontrib>Dhatt, Balpreet K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orozco, Jairo</au><au>Manian, Vidya</au><au>Alfaro, Estefania</au><au>Walia, Harkamal</au><au>Dhatt, Balpreet K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-03-27</date><risdate>2023</risdate><volume>23</volume><issue>7</issue><spage>3515</spage><pages>3515-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37050573</pmid><doi>10.3390/s23073515</doi><orcidid>https://orcid.org/0000-0002-9712-5824</orcidid><orcidid>https://orcid.org/0000-0003-3834-8857</orcidid><orcidid>https://orcid.org/0000-0002-7986-7170</orcidid><orcidid>https://orcid.org/0000-0002-3577-962X</orcidid><orcidid>https://orcid.org/0000-0001-5438-1177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-03, Vol.23 (7), p.3515 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0d84f4573a9f40f79e5ad7f3938955fe |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Adaptive algorithms adaptive neighborhood Agricultural production Algorithms Ambient temperature Classification Computer architecture Deep learning Eigenvectors graph convolutional network Graph neural networks Graph representations hyperspectral image classification Hyperspectral imaging hyperspectral rice seed images Image classification laplacian matrix Machine learning Methods Neighborhoods Neural networks Pixels Rice Seeds Spatial data Spectral signatures |
title | Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Convolutional%20Network%20Using%20Adaptive%20Neighborhood%20Laplacian%20Matrix%20for%20Hyperspectral%20Images%20with%20Application%20to%20Rice%20Seed%20Image%20Classification&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Orozco,%20Jairo&rft.date=2023-03-27&rft.volume=23&rft.issue=7&rft.spage=3515&rft.pages=3515-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23073515&rft_dat=%3Cgale_doaj_%3EA746948386%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-fae77510d8450e4a300dea42d97443106b497f10febb147f838ed17af2345c943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799782400&rft_id=info:pmid/37050573&rft_galeid=A746948386&rfr_iscdi=true |