Loading…
Boosting the Photoelectrochemical Water Oxidation Performance of TiO2 Nanotubes by Surface Modification Using Silver Phosphate
Photoelectrocatalytic approaches are fascinating options for long-lasting energy storage through the transformation of solar energy into electrical energy or hydrogen fuel. Herein, we report a facile method of fabricating a composite electrode of well-aligned TiO2 nanotubes (TNTs) decorated with pho...
Saved in:
Published in: | Catalysts 2022-11, Vol.12 (11), p.1440 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photoelectrocatalytic approaches are fascinating options for long-lasting energy storage through the transformation of solar energy into electrical energy or hydrogen fuel. Herein, we report a facile method of fabricating a composite electrode of well-aligned TiO2 nanotubes (TNTs) decorated with photodeposited silver phosphate (Ag3PO4) nanoparticles. Assessment of the optical, physiochemical and photoelectrochemical features demonstrated that the fabricated TNTs/Ag3PO4 films showed a substantially boosted photocurrent response of 0.74 mA/cm2, almost a 3-fold enrichment in comparison with the pure TNTs. Specifically, the applied bias photon-to-current efficiency of the fabricated TNTs/Ag3PO4 composite electrode was 2.4-fold superior to that of the pure TNTs electrode. In these TNTs/Ag3PO4 photoanodes, the introduction of Ag3PO4 over TNTs enhanced light absorption and improved charge transfer and surface conductivity. The developed process can be generally applied to designing and developing efficient contact interfaces between photoanodes and numerous cocatalysts. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12111440 |