Loading…

The establishment of an immunosensor for the detection of SPOP

In this paper, we first synthesis three-dimensional jasmine-like Cu@L-aspartic acid(L-ASP) inorganic–organic hybrid nanoflowers to load palladium-platinum nanoparticles (Pd–Pt NPs) as the signal enhancer in order to quantify intracellular speckle-type POZ domain protein. Scanning electron microscope...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-06, Vol.11 (1), p.12571-12571, Article 12571
Main Authors: Yue, Song, Sun, Kexin, Li, Siyuan, Liu, Yi, Zhu, Qihao, Chen, Yiyu, Yuan, Dong, Wen, Tao, Ge, Mingjian, Yu, Qiubo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we first synthesis three-dimensional jasmine-like Cu@L-aspartic acid(L-ASP) inorganic–organic hybrid nanoflowers to load palladium-platinum nanoparticles (Pd–Pt NPs) as the signal enhancer in order to quantify intracellular speckle-type POZ domain protein. Scanning electron microscope, fourier transform infrared, energy dispersive spectrometer, X-ray photoelectron spectroscopy analysis was used to characterize the newly synthesized materials. The newly formed Cu@L-Asp/Pd-PtNPs can catalyze the decomposition of hydrogen peroxide and exhibit excellent catalytic performance. When different concentration of speckle-type POZ domain protein is captured by speckle-type POZ domain protein antibody linked to the surface of Cu@L-Asp/Pd–Pt NPs, the current signal decreases with the increase concentration of speckle-type POZ domain protein. After optimization, the speckle-type POZ domain protein immunosensor exhibited a good linear response over a concentration range from 0.1–1 ng mL −1 with a low detection limit of 19 fg mL −1 . The proposed sensor demonstrates good stability within 28 days, acceptable reproducibility (RSD = 0.52%) and selectivity to the speckle-type POZ domain protein in the presence of possible interfering substances and has potential application for detecting other intracellular macromolecular substances.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-91944-3