Loading…
Proof of concept: real-time viability and metabolic profiling of probiotics with isothermal microcalorimetry
Isothermal microcalorimetry (IMC) is a potent analytical method for the real-time assessment of microbial metabolic activity, which serves as an indicator of microbial viability. This approach is highly relevant to the fields of probiotics and Live Biotherapeutic Products (LBPs), offering insights i...
Saved in:
Published in: | Frontiers in microbiology 2024-06, Vol.15, p.1391688 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isothermal microcalorimetry (IMC) is a potent analytical method for the real-time assessment of microbial metabolic activity, which serves as an indicator of microbial viability. This approach is highly relevant to the fields of probiotics and Live Biotherapeutic Products (LBPs), offering insights into microbial viability and growth kinetics. One important characteristic of IMC is its ability to measure microbial metabolic activity separately from cellular enumeration. This is particularly useful in situations where continuous tracking of bacterial activity is challenging. The focus on metabolic activity significantly benefits both probiotic research and industrial microbiology applications. IMC's versatility in handling different media matrices allows for the implementation of viability assessments under conditions that mirror those found in various industrial environments or biological models. In our study, we provide a proof of concept for the application of IMC in determining viability and growth dynamics and their correlation with bacterial count in probiotic organisms. Our findings reinforce the potential of IMC as a key method for process enhancement and accurate strain characterization within the probiotic sector. This supports the broader objective of refining the systematic approach and methods used during the development process, thereby providing detailed insights into probiotics and LBPs. |
---|---|
ISSN: | 1664-302X 1664-302X |
DOI: | 10.3389/fmicb.2024.1391688 |