Loading…
Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance t o conventional therapies. Nanomedicine offers a promisin...
Saved in:
Published in: | Cell death discovery 2024-08, Vol.10 (1), p.386-13, Article 386 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-b0d1c728df7ae1f62c194998b5fcb59764a636646a8ef1674003cff0ee9f0a313 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 386 |
container_title | Cell death discovery |
container_volume | 10 |
creator | Luobin, Lin Wanxin, He Yingxin, Guo Qinzhou, Zheng Zefeng, Liang Danyang, Wu Huaqin, Li |
description | The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance t
o
conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment. |
doi_str_mv | 10.1038/s41420-024-02121-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0df7bfb7b4224986b8880e52cb5ec4a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0df7bfb7b4224986b8880e52cb5ec4a3</doaj_id><sourcerecordid>3099801619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-b0d1c728df7ae1f62c194998b5fcb59764a636646a8ef1674003cff0ee9f0a313</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EolXpC7BAkdiwCRxf4gs7VHGpVLWbdsHKcpzjGY8mzmAnSH17PE0piAULy9bxd_5z-Ql5TeE9Ba4_FEEFgxaYqIcy2sIzcsqg061SVD7_631CzkvZAQDtlFCavyQn3DAwmotT8v3apWnEIfqYsI1pWDwOzSFPm-zGGm887vfNgG7eNjE13iWPuZm3mN3h_mMzot-6FMtYGpdqHuZyQD_Hn1hekRfB7QueP95n5O7L59uLb-3VzdfLi09XredSzm0PA_WK6SEohzRI5qkRxui-C77vjJLCyQoK6TQGKpUA4D4EQDQBHKf8jFyuusPkdvaQ4-jyvZ1ctA-BKW-sy3P0e7RQi_ShV71gTBgte601YMdqIfTC8ar1btWqC_ixYJntGMtxAy7htBTLoXYGVFJT0bf_oLtpyalOeqS0qCMxVSm2Uj5PpWQMTw1SsEcf7eqjrT7aBx8t1KQ3j9JLXy14SvntWgX4CpT6lTaY_9T-j-wvvXmngA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098472827</pqid></control><display><type>article</type><title>Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives</title><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Luobin, Lin ; Wanxin, He ; Yingxin, Guo ; Qinzhou, Zheng ; Zefeng, Liang ; Danyang, Wu ; Huaqin, Li</creator><creatorcontrib>Luobin, Lin ; Wanxin, He ; Yingxin, Guo ; Qinzhou, Zheng ; Zefeng, Liang ; Danyang, Wu ; Huaqin, Li</creatorcontrib><description>The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance t
o
conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.</description><identifier>ISSN: 2058-7716</identifier><identifier>EISSN: 2058-7716</identifier><identifier>DOI: 10.1038/s41420-024-02121-0</identifier><identifier>PMID: 39209834</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67 ; 692/308/153 ; 692/699/67 ; Apoptosis ; Autophagy ; Biochemistry ; Biocompatibility ; Biomedical and Life Sciences ; Cancer therapies ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell growth ; Chemotherapy ; Drug delivery ; Drug delivery systems ; Drug resistance ; Life Sciences ; Ligands ; Light therapy ; Medical innovations ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Necroptosis ; Polyethylene glycol ; Quantum dots ; Radiation therapy ; Review Article ; Side effects ; Stem Cells ; Tumors</subject><ispartof>Cell death discovery, 2024-08, Vol.10 (1), p.386-13, Article 386</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-b0d1c728df7ae1f62c194998b5fcb59764a636646a8ef1674003cff0ee9f0a313</cites><orcidid>0009-0000-8791-9842 ; 0009-0009-8450-2107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39209834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luobin, Lin</creatorcontrib><creatorcontrib>Wanxin, He</creatorcontrib><creatorcontrib>Yingxin, Guo</creatorcontrib><creatorcontrib>Qinzhou, Zheng</creatorcontrib><creatorcontrib>Zefeng, Liang</creatorcontrib><creatorcontrib>Danyang, Wu</creatorcontrib><creatorcontrib>Huaqin, Li</creatorcontrib><title>Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives</title><title>Cell death discovery</title><addtitle>Cell Death Discov</addtitle><addtitle>Cell Death Discov</addtitle><description>The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance t
o
conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.</description><subject>631/67</subject><subject>692/308/153</subject><subject>692/699/67</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer therapies</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Chemotherapy</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug resistance</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Light therapy</subject><subject>Medical innovations</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Necroptosis</subject><subject>Polyethylene glycol</subject><subject>Quantum dots</subject><subject>Radiation therapy</subject><subject>Review Article</subject><subject>Side effects</subject><subject>Stem Cells</subject><subject>Tumors</subject><issn>2058-7716</issn><issn>2058-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctu1DAUhi0EolXpC7BAkdiwCRxf4gs7VHGpVLWbdsHKcpzjGY8mzmAnSH17PE0piAULy9bxd_5z-Ql5TeE9Ba4_FEEFgxaYqIcy2sIzcsqg061SVD7_631CzkvZAQDtlFCavyQn3DAwmotT8v3apWnEIfqYsI1pWDwOzSFPm-zGGm887vfNgG7eNjE13iWPuZm3mN3h_mMzot-6FMtYGpdqHuZyQD_Hn1hekRfB7QueP95n5O7L59uLb-3VzdfLi09XredSzm0PA_WK6SEohzRI5qkRxui-C77vjJLCyQoK6TQGKpUA4D4EQDQBHKf8jFyuusPkdvaQ4-jyvZ1ctA-BKW-sy3P0e7RQi_ShV71gTBgte601YMdqIfTC8ar1btWqC_ixYJntGMtxAy7htBTLoXYGVFJT0bf_oLtpyalOeqS0qCMxVSm2Uj5PpWQMTw1SsEcf7eqjrT7aBx8t1KQ3j9JLXy14SvntWgX4CpT6lTaY_9T-j-wvvXmngA</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Luobin, Lin</creator><creator>Wanxin, He</creator><creator>Yingxin, Guo</creator><creator>Qinzhou, Zheng</creator><creator>Zefeng, Liang</creator><creator>Danyang, Wu</creator><creator>Huaqin, Li</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-8791-9842</orcidid><orcidid>https://orcid.org/0009-0009-8450-2107</orcidid></search><sort><creationdate>20240829</creationdate><title>Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives</title><author>Luobin, Lin ; Wanxin, He ; Yingxin, Guo ; Qinzhou, Zheng ; Zefeng, Liang ; Danyang, Wu ; Huaqin, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-b0d1c728df7ae1f62c194998b5fcb59764a636646a8ef1674003cff0ee9f0a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/67</topic><topic>692/308/153</topic><topic>692/699/67</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer therapies</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Chemotherapy</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug resistance</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Light therapy</topic><topic>Medical innovations</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Necroptosis</topic><topic>Polyethylene glycol</topic><topic>Quantum dots</topic><topic>Radiation therapy</topic><topic>Review Article</topic><topic>Side effects</topic><topic>Stem Cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luobin, Lin</creatorcontrib><creatorcontrib>Wanxin, He</creatorcontrib><creatorcontrib>Yingxin, Guo</creatorcontrib><creatorcontrib>Qinzhou, Zheng</creatorcontrib><creatorcontrib>Zefeng, Liang</creatorcontrib><creatorcontrib>Danyang, Wu</creatorcontrib><creatorcontrib>Huaqin, Li</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell death discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luobin, Lin</au><au>Wanxin, He</au><au>Yingxin, Guo</au><au>Qinzhou, Zheng</au><au>Zefeng, Liang</au><au>Danyang, Wu</au><au>Huaqin, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives</atitle><jtitle>Cell death discovery</jtitle><stitle>Cell Death Discov</stitle><addtitle>Cell Death Discov</addtitle><date>2024-08-29</date><risdate>2024</risdate><volume>10</volume><issue>1</issue><spage>386</spage><epage>13</epage><pages>386-13</pages><artnum>386</artnum><issn>2058-7716</issn><eissn>2058-7716</eissn><abstract>The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance t
o
conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39209834</pmid><doi>10.1038/s41420-024-02121-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-8791-9842</orcidid><orcidid>https://orcid.org/0009-0009-8450-2107</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7716 |
ispartof | Cell death discovery, 2024-08, Vol.10 (1), p.386-13, Article 386 |
issn | 2058-7716 2058-7716 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0df7bfb7b4224986b8880e52cb5ec4a3 |
source | PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/67 692/308/153 692/699/67 Apoptosis Autophagy Biochemistry Biocompatibility Biomedical and Life Sciences Cancer therapies Cell Biology Cell Cycle Analysis Cell death Cell growth Chemotherapy Drug delivery Drug delivery systems Drug resistance Life Sciences Ligands Light therapy Medical innovations Nanomaterials Nanoparticles Nanotechnology Necroptosis Polyethylene glycol Quantum dots Radiation therapy Review Article Side effects Stem Cells Tumors |
title | Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomedicine-induced%20programmed%20cell%20death%20in%20cancer%20therapy:%20mechanisms%20and%20perspectives&rft.jtitle=Cell%20death%20discovery&rft.au=Luobin,%20Lin&rft.date=2024-08-29&rft.volume=10&rft.issue=1&rft.spage=386&rft.epage=13&rft.pages=386-13&rft.artnum=386&rft.issn=2058-7716&rft.eissn=2058-7716&rft_id=info:doi/10.1038/s41420-024-02121-0&rft_dat=%3Cproquest_doaj_%3E3099801619%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-b0d1c728df7ae1f62c194998b5fcb59764a636646a8ef1674003cff0ee9f0a313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098472827&rft_id=info:pmid/39209834&rfr_iscdi=true |