Loading…
Fluorescence Sensing Platforms for Epinephrine Detection Based on Low Temperature Cofired Ceramics
A novel fluorescence-sensing pathway for epinephrine (EP) detection was investigated. The ceramic-based miniature biosensor was developed through the immobilization of an enzyme (laccase, tyrosinase) on a polymer-poly-(2,6-di([2,2'-bithiophen]-5-yl)-4-(5-hexylthiophen-2-yl)pyridine), based on l...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-03, Vol.20 (5), p.1429 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel fluorescence-sensing pathway for epinephrine (EP) detection was investigated. The ceramic-based miniature biosensor was developed through the immobilization of an enzyme (laccase, tyrosinase) on a polymer-poly-(2,6-di([2,2'-bithiophen]-5-yl)-4-(5-hexylthiophen-2-yl)pyridine), based on low temperature cofired ceramics technology (LTCC). The detection procedure was based on the oxidation of the substrate, i.e., in the presence of the enzyme. An alternative enzyme-free system utilized the formation of a colorful complex between Fe
ions and epinephrine molecules. With the optimized conditions, the analytical performance illustrated high sensitivity and selectivity in a broad linear range with a detection limit of 0.14-2.10 nM. Moreover, the strategy was successfully used for an EP injection test with labeled pharmacological samples. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20051429 |