Loading…
Including Liquid Metal into Porous Elastomeric Films for Flexible and Enzyme-Free Glucose Fuel Cells: A Preliminary Evaluation
This communication introduces a new flexible elastomeric composite film, which can directly convert the chemical energy of glucose into electricity. The fabrication process is simple, and no specific equipment is required. Notably, the liquid metal Galinstan is exploited with a two-fold objective: (...
Saved in:
Published in: | Journal of low power electronics and applications 2018-12, Vol.8 (4), p.45 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This communication introduces a new flexible elastomeric composite film, which can directly convert the chemical energy of glucose into electricity. The fabrication process is simple, and no specific equipment is required. Notably, the liquid metal Galinstan is exploited with a two-fold objective: (i) Galinstan particles are mixed with polydimethylsiloxane to obtain a highly conductive porous thick film scaffold; (ii) the presence of Galinstan in the composite film enables the direct growth of highly catalytic gold structures. As a first proof of concept, we demonstrate that when immersed in a 20 mM glucose solution, a 5 mm-long, 5 mm-wide and 2 mm-thick sample can generate a volumetric power density up to 3.6 mW·cm − 3 at 7 mA·cm − 3 and 0.51 V without using any enzymes. |
---|---|
ISSN: | 2079-9268 2079-9268 |
DOI: | 10.3390/jlpea8040045 |