Loading…
Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices
The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX opera...
Saved in:
Published in: | IET power electronics 2022-11, Vol.15 (14), p.1540-1549 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3 |
container_end_page | 1549 |
container_issue | 14 |
container_start_page | 1540 |
container_title | IET power electronics |
container_volume | 15 |
creator | Fortes, G. Ladoux, P. Fabre, J. Flumian, D. |
description | The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices. |
doi_str_mv | 10.1049/pel2.12324 |
format | article |
fullrecord | <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0e12ab05e11649389faa65f28cf1baa2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0e12ab05e11649389faa65f28cf1baa2</doaj_id><sourcerecordid>PEL212324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3</originalsourceid><addsrcrecordid>eNp9kc9qGzEQh5fSQNO0lz6Bri3Y1eiftUdj0iZgSKFNchRjadZRoq5caXHxrY_QZ-yTdJ0NgV56mmH4fh8Mv6Z5B3wOXLUfd5TEHIQU6kVzCgutZ0or-fJ5l_pV87rWe84NKG1Pmx_LHtOhxspyx1Lc3g0M-8D6_OfX75QxsLyjgkPM_RFAJjlnD7esUM099gOrsd8mYuiHuCe2KTFsx4GVxmTP5Fyyhxv2Na5GXaB99FTfNCcdpkpvn-ZZc_3p_NvqYra--ny5Wq5nXhqrZgq9UEoAGhV8oECL1oBAZToewsIH3QaDVpCV3Nrxmc5avUBopQ8GOHh51lxO3pDx3u1K_I7l4DJG93jIZeuwDNEncpxG84ZrAjCqlbbtEI3uhPUdbBDF6Ho_ue4w_aO6WK7d8calaVuQdg8j-2Fifcm1FuqeA8DdsSR3LMk9ljTCMME_Y6LDf0j35Xwtpsxfs6OTSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</title><source>Wiley_OA刊</source><creator>Fortes, G. ; Ladoux, P. ; Fabre, J. ; Flumian, D.</creator><creatorcontrib>Fortes, G. ; Ladoux, P. ; Fabre, J. ; Flumian, D.</creatorcontrib><description>The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices.</description><identifier>ISSN: 1755-4535</identifier><identifier>ISSN: 1755-4543</identifier><identifier>EISSN: 1755-4543</identifier><identifier>EISSN: 1755-4535</identifier><identifier>DOI: 10.1049/pel2.12324</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Electric power ; Electronics ; Engineering Sciences</subject><ispartof>IET power electronics, 2022-11, Vol.15 (14), p.1540-1549</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3</cites><orcidid>0000-0002-2697-8707 ; 0000-0002-4032-9180 ; 0000-0002-1010-3404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fpel2.12324$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fpel2.12324$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11562,27924,27925,46052,46476</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03699138$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fortes, G.</creatorcontrib><creatorcontrib>Ladoux, P.</creatorcontrib><creatorcontrib>Fabre, J.</creatorcontrib><creatorcontrib>Flumian, D.</creatorcontrib><title>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</title><title>IET power electronics</title><description>The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices.</description><subject>Electric power</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><issn>1755-4535</issn><issn>1755-4543</issn><issn>1755-4543</issn><issn>1755-4535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9qGzEQh5fSQNO0lz6Bri3Y1eiftUdj0iZgSKFNchRjadZRoq5caXHxrY_QZ-yTdJ0NgV56mmH4fh8Mv6Z5B3wOXLUfd5TEHIQU6kVzCgutZ0or-fJ5l_pV87rWe84NKG1Pmx_LHtOhxspyx1Lc3g0M-8D6_OfX75QxsLyjgkPM_RFAJjlnD7esUM099gOrsd8mYuiHuCe2KTFsx4GVxmTP5Fyyhxv2Na5GXaB99FTfNCcdpkpvn-ZZc_3p_NvqYra--ny5Wq5nXhqrZgq9UEoAGhV8oECL1oBAZToewsIH3QaDVpCV3Nrxmc5avUBopQ8GOHh51lxO3pDx3u1K_I7l4DJG93jIZeuwDNEncpxG84ZrAjCqlbbtEI3uhPUdbBDF6Ho_ue4w_aO6WK7d8calaVuQdg8j-2Fifcm1FuqeA8DdsSR3LMk9ljTCMME_Y6LDf0j35Xwtpsxfs6OTSA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Fortes, G.</creator><creator>Ladoux, P.</creator><creator>Fabre, J.</creator><creator>Flumian, D.</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2697-8707</orcidid><orcidid>https://orcid.org/0000-0002-4032-9180</orcidid><orcidid>https://orcid.org/0000-0002-1010-3404</orcidid></search><sort><creationdate>20221101</creationdate><title>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</title><author>Fortes, G. ; Ladoux, P. ; Fabre, J. ; Flumian, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electric power</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fortes, G.</creatorcontrib><creatorcontrib>Ladoux, P.</creatorcontrib><creatorcontrib>Fabre, J.</creatorcontrib><creatorcontrib>Flumian, D.</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>IET power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fortes, G.</au><au>Ladoux, P.</au><au>Fabre, J.</au><au>Flumian, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</atitle><jtitle>IET power electronics</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>15</volume><issue>14</issue><spage>1540</spage><epage>1549</epage><pages>1540-1549</pages><issn>1755-4535</issn><issn>1755-4543</issn><eissn>1755-4543</eissn><eissn>1755-4535</eissn><abstract>The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/pel2.12324</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2697-8707</orcidid><orcidid>https://orcid.org/0000-0002-4032-9180</orcidid><orcidid>https://orcid.org/0000-0002-1010-3404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4535 |
ispartof | IET power electronics, 2022-11, Vol.15 (14), p.1540-1549 |
issn | 1755-4535 1755-4543 1755-4543 1755-4535 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0e12ab05e11649389faa65f28cf1baa2 |
source | Wiley_OA刊 |
subjects | Electric power Electronics Engineering Sciences |
title | Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20light%20and%20no%E2%80%90load%20operation%20of%20a%20300%20kW%20resonant%20single%20active%20bridge%20based%20on%203.3%20kV%20SiC%E2%80%90devices&rft.jtitle=IET%20power%20electronics&rft.au=Fortes,%20G.&rft.date=2022-11-01&rft.volume=15&rft.issue=14&rft.spage=1540&rft.epage=1549&rft.pages=1540-1549&rft.issn=1755-4535&rft.eissn=1755-4543&rft_id=info:doi/10.1049/pel2.12324&rft_dat=%3Cwiley_doaj_%3EPEL212324%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |