Loading…

Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices

The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX opera...

Full description

Saved in:
Bibliographic Details
Published in:IET power electronics 2022-11, Vol.15 (14), p.1540-1549
Main Authors: Fortes, G., Ladoux, P., Fabre, J., Flumian, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3
container_end_page 1549
container_issue 14
container_start_page 1540
container_title IET power electronics
container_volume 15
creator Fortes, G.
Ladoux, P.
Fabre, J.
Flumian, D.
description The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices.
doi_str_mv 10.1049/pel2.12324
format article
fullrecord <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0e12ab05e11649389faa65f28cf1baa2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0e12ab05e11649389faa65f28cf1baa2</doaj_id><sourcerecordid>PEL212324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3</originalsourceid><addsrcrecordid>eNp9kc9qGzEQh5fSQNO0lz6Bri3Y1eiftUdj0iZgSKFNchRjadZRoq5caXHxrY_QZ-yTdJ0NgV56mmH4fh8Mv6Z5B3wOXLUfd5TEHIQU6kVzCgutZ0or-fJ5l_pV87rWe84NKG1Pmx_LHtOhxspyx1Lc3g0M-8D6_OfX75QxsLyjgkPM_RFAJjlnD7esUM099gOrsd8mYuiHuCe2KTFsx4GVxmTP5Fyyhxv2Na5GXaB99FTfNCcdpkpvn-ZZc_3p_NvqYra--ny5Wq5nXhqrZgq9UEoAGhV8oECL1oBAZToewsIH3QaDVpCV3Nrxmc5avUBopQ8GOHh51lxO3pDx3u1K_I7l4DJG93jIZeuwDNEncpxG84ZrAjCqlbbtEI3uhPUdbBDF6Ho_ue4w_aO6WK7d8calaVuQdg8j-2Fifcm1FuqeA8DdsSR3LMk9ljTCMME_Y6LDf0j35Xwtpsxfs6OTSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</title><source>Wiley_OA刊</source><creator>Fortes, G. ; Ladoux, P. ; Fabre, J. ; Flumian, D.</creator><creatorcontrib>Fortes, G. ; Ladoux, P. ; Fabre, J. ; Flumian, D.</creatorcontrib><description>The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices.</description><identifier>ISSN: 1755-4535</identifier><identifier>ISSN: 1755-4543</identifier><identifier>EISSN: 1755-4543</identifier><identifier>EISSN: 1755-4535</identifier><identifier>DOI: 10.1049/pel2.12324</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Electric power ; Electronics ; Engineering Sciences</subject><ispartof>IET power electronics, 2022-11, Vol.15 (14), p.1540-1549</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3</cites><orcidid>0000-0002-2697-8707 ; 0000-0002-4032-9180 ; 0000-0002-1010-3404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fpel2.12324$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fpel2.12324$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11562,27924,27925,46052,46476</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03699138$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fortes, G.</creatorcontrib><creatorcontrib>Ladoux, P.</creatorcontrib><creatorcontrib>Fabre, J.</creatorcontrib><creatorcontrib>Flumian, D.</creatorcontrib><title>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</title><title>IET power electronics</title><description>The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices.</description><subject>Electric power</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><issn>1755-4535</issn><issn>1755-4543</issn><issn>1755-4543</issn><issn>1755-4535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9qGzEQh5fSQNO0lz6Bri3Y1eiftUdj0iZgSKFNchRjadZRoq5caXHxrY_QZ-yTdJ0NgV56mmH4fh8Mv6Z5B3wOXLUfd5TEHIQU6kVzCgutZ0or-fJ5l_pV87rWe84NKG1Pmx_LHtOhxspyx1Lc3g0M-8D6_OfX75QxsLyjgkPM_RFAJjlnD7esUM099gOrsd8mYuiHuCe2KTFsx4GVxmTP5Fyyhxv2Na5GXaB99FTfNCcdpkpvn-ZZc_3p_NvqYra--ny5Wq5nXhqrZgq9UEoAGhV8oECL1oBAZToewsIH3QaDVpCV3Nrxmc5avUBopQ8GOHh51lxO3pDx3u1K_I7l4DJG93jIZeuwDNEncpxG84ZrAjCqlbbtEI3uhPUdbBDF6Ho_ue4w_aO6WK7d8calaVuQdg8j-2Fifcm1FuqeA8DdsSR3LMk9ljTCMME_Y6LDf0j35Xwtpsxfs6OTSA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Fortes, G.</creator><creator>Ladoux, P.</creator><creator>Fabre, J.</creator><creator>Flumian, D.</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2697-8707</orcidid><orcidid>https://orcid.org/0000-0002-4032-9180</orcidid><orcidid>https://orcid.org/0000-0002-1010-3404</orcidid></search><sort><creationdate>20221101</creationdate><title>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</title><author>Fortes, G. ; Ladoux, P. ; Fabre, J. ; Flumian, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electric power</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fortes, G.</creatorcontrib><creatorcontrib>Ladoux, P.</creatorcontrib><creatorcontrib>Fabre, J.</creatorcontrib><creatorcontrib>Flumian, D.</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>IET power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fortes, G.</au><au>Ladoux, P.</au><au>Fabre, J.</au><au>Flumian, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices</atitle><jtitle>IET power electronics</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>15</volume><issue>14</issue><spage>1540</spage><epage>1549</epage><pages>1540-1549</pages><issn>1755-4535</issn><issn>1755-4543</issn><eissn>1755-4543</eissn><eissn>1755-4535</eissn><abstract>The resonant single active bridge topology (R‐SAB) operated in the half‐cycle discontinuous current mode (HC‐DCM) is a very attractive solution due to its high efficiency, low complexity and fixed voltage transfer ratio (DCX). However, as expected for a series‐resonant converter (SRC), its DCX operation depends on the resonant tank circuit‐parameters, parasitic capacitive elements and output load. Specially, at light and no‐load operation, when the system is extremely underdamped, it may present a large output overvoltage due to resonance interactions. This is of prime importance for converters using medium voltage (MV) SiC‐MOSFETs, which feature significant output capacitances that can lead to voltage breakdown of the rectifier semiconductors. Therefore, the supposed fixed‐voltage transfer ratio is not entirely valid and deserves a proper understanding due its criticality. This paper reviews the subject, clarifying its root cause and its multifactorial dependencies. Moreover, it provides a simple solution based on a variable dead‐time with fixed magnetizing current experimentally verified with a 300kW/1.8kV R‐SAB prototype implemented with MV SiC‐devices.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/pel2.12324</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2697-8707</orcidid><orcidid>https://orcid.org/0000-0002-4032-9180</orcidid><orcidid>https://orcid.org/0000-0002-1010-3404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4535
ispartof IET power electronics, 2022-11, Vol.15 (14), p.1540-1549
issn 1755-4535
1755-4543
1755-4543
1755-4535
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0e12ab05e11649389faa65f28cf1baa2
source Wiley_OA刊
subjects Electric power
Electronics
Engineering Sciences
title Analysis of light and no‐load operation of a 300 kW resonant single active bridge based on 3.3 kV SiC‐devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20light%20and%20no%E2%80%90load%20operation%20of%20a%20300%20kW%20resonant%20single%20active%20bridge%20based%20on%203.3%20kV%20SiC%E2%80%90devices&rft.jtitle=IET%20power%20electronics&rft.au=Fortes,%20G.&rft.date=2022-11-01&rft.volume=15&rft.issue=14&rft.spage=1540&rft.epage=1549&rft.pages=1540-1549&rft.issn=1755-4535&rft.eissn=1755-4543&rft_id=info:doi/10.1049/pel2.12324&rft_dat=%3Cwiley_doaj_%3EPEL212324%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3684-4ac24421a64dcdede79612a46f0dd7cd59d6a82e83088614f8857a193cd6101c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true