Loading…
Engineered Human Tissue as A New Platform for Mosquito Bite-Site Biology Investigations
Vector-borne diseases transmitted through the bites of hematophagous arthropods, such as mosquitoes, continue to be a significant threat to human health globally. Transmission of disease by biting arthropod vectors includes interactions between (1) saliva expectorated by a vector during blood meal a...
Saved in:
Published in: | Insects (Basel, Switzerland) Switzerland), 2023-06, Vol.14 (6), p.514 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vector-borne diseases transmitted through the bites of hematophagous arthropods, such as mosquitoes, continue to be a significant threat to human health globally. Transmission of disease by biting arthropod vectors includes interactions between (1) saliva expectorated by a vector during blood meal acquisition from a human host, (2) the transmitted vector-borne pathogens, and (3) host cells present at the skin bite site. Currently, the investigation of bite-site biology is challenged by the lack of model 3D human skin tissues for in vitro analyses. To help fill this gap, we have used a tissue engineering approach to develop new stylized human dermal microvascular bed tissue approximates-complete with warm blood-built with 3D capillary alginate gel (Capgel) biomaterial scaffolds. These engineered tissues, termed a Biologic Interfacial Tissue-Engineered System (BITES), were cellularized with either human dermal fibroblasts (HDFs) or human umbilical vein endothelial cells (HUVECs). Both cell types formed tubular microvessel-like tissue structures of oriented cells (82% and 54% for HDFs and HUVECs, respectively) lining the unique Capgel parallel capillary microstructures. Female
(
.)
mosquitoes, a prototypic hematophagous biting vector arthropod, swarmed, bit, and probed blood-loaded HDF BITES microvessel bed tissues that were warmed (34-37 °C), acquiring blood meals in 151 ± 46 s on average, with some ingesting ≳4 µL or more of blood. Further, these tissue-engineered constructs could be cultured for at least three (3) days following blood meal acquisitions. Altogether, these studies serve as a powerful proof-of-concept demonstration of the innovative BITES platform and indicate its potential for the future investigation of arthropod bite-site cellular and molecular biology. |
---|---|
ISSN: | 2075-4450 2075-4450 |
DOI: | 10.3390/insects14060514 |