Loading…

3D Modeling Method for Dome Structure Using Digital Geological Map and DEM

Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information 2022-06, Vol.11 (6), p.339
Main Authors: Liu, Xian-Yu, Li, An-Bo, Chen, Hao, Men, Yan-Qing, Huang, Yong-Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-ecec26da2caf2c915bcc2a89e2d5d380552680130a8fdbaa4ef377dfd861f0ce3
cites cdi_FETCH-LOGICAL-c367t-ecec26da2caf2c915bcc2a89e2d5d380552680130a8fdbaa4ef377dfd861f0ce3
container_end_page
container_issue 6
container_start_page 339
container_title ISPRS international journal of geo-information
container_volume 11
creator Liu, Xian-Yu
Li, An-Bo
Chen, Hao
Men, Yan-Qing
Huang, Yong-Liang
description Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting the requirement of its 3D geological modeling. Therefore, this paper takes the dome structure as an example to explore a 3D modeling method based on geological maps, DEM and related geological knowledge. The method includes: (1) adaptively calculating the attitude of points on the stratigraphic boundaries; (2) inferring and generating the bottom boundary of the model from the attitude data of the boundary points; (3) generating the model interface constrained by Bézier curves based on the bottom boundary; (4) generating the top and bottom surfaces of the stratum; and (5) stitching each surface of the geological body to generate the final dome model. Case studies of the dome in Wulongshan in China and the Richat structure in Mauritania show that this method can build a solid model of the dome based only on geological maps and DEM data, whose morphological features are basically consistent with those embodied in the section view or the model generated by traditional methods.
doi_str_mv 10.3390/ijgi11060339
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0e348aa8b82b4f58845284d82490f98b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0e348aa8b82b4f58845284d82490f98b</doaj_id><sourcerecordid>2679744623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ecec26da2caf2c915bcc2a89e2d5d380552680130a8fdbaa4ef377dfd861f0ce3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKU3PsASVwJ-xbGPqCmlqBEH6Nly_AiO0ro46YG_J6UIdS87uzuaWQ0Atxg9UCrRY2ibgDHiaJwuwIQQgjIpObs8w9dg1vctGktiKhiagFdawipa14VdAys3fEYLfUywjFsH34d0MMMhObjpj_cyNGHQHVy62MUmmBFWeg_1zsJyUd2AK6-73s3--hRsnhcf85ds_bZczZ_WmaG8GDJnnCHcamK0J0bivDaGaCEdsbmlAuU54QJhirTwttaaOU-LwnorOPbIODoFq5OujbpV-xS2On2rqIP6XcTUKJ2GYDqnkKNMaC1qQWrmcyFYTgSzgjCJvBT1qHV30tqn-HVw_aDaeEi78X1FeCELxjihI-v-xDIp9n1y_t8VI3UMX52HT38Ay_Z1bQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679744623</pqid></control><display><type>article</type><title>3D Modeling Method for Dome Structure Using Digital Geological Map and DEM</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Xian-Yu ; Li, An-Bo ; Chen, Hao ; Men, Yan-Qing ; Huang, Yong-Liang</creator><creatorcontrib>Liu, Xian-Yu ; Li, An-Bo ; Chen, Hao ; Men, Yan-Qing ; Huang, Yong-Liang</creatorcontrib><description>Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting the requirement of its 3D geological modeling. Therefore, this paper takes the dome structure as an example to explore a 3D modeling method based on geological maps, DEM and related geological knowledge. The method includes: (1) adaptively calculating the attitude of points on the stratigraphic boundaries; (2) inferring and generating the bottom boundary of the model from the attitude data of the boundary points; (3) generating the model interface constrained by Bézier curves based on the bottom boundary; (4) generating the top and bottom surfaces of the stratum; and (5) stitching each surface of the geological body to generate the final dome model. Case studies of the dome in Wulongshan in China and the Richat structure in Mauritania show that this method can build a solid model of the dome based only on geological maps and DEM data, whose morphological features are basically consistent with those embodied in the section view or the model generated by traditional methods.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi11060339</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; attitude calculation ; Attitudes ; Automation ; Curves ; Deformation ; digital geological map ; dome structure ; Domes ; Earth science ; Fault lines ; Geologic mapping ; Geological mapping ; Geological maps ; Geological structures ; Geological surveys ; Geology ; interface generation ; Interfaces ; Knowledge ; Methods ; Mining ; Modelling ; Stitching ; Stratigraphy ; Surveying ; Three dimensional models ; three-dimensional geological modeling</subject><ispartof>ISPRS international journal of geo-information, 2022-06, Vol.11 (6), p.339</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ecec26da2caf2c915bcc2a89e2d5d380552680130a8fdbaa4ef377dfd861f0ce3</citedby><cites>FETCH-LOGICAL-c367t-ecec26da2caf2c915bcc2a89e2d5d380552680130a8fdbaa4ef377dfd861f0ce3</cites><orcidid>0000-0002-7921-9720 ; 0000-0002-4281-4032 ; 0000-0003-2331-0469 ; 0000-0001-6964-2755 ; 0000-0001-9962-470X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679744623/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679744623?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Liu, Xian-Yu</creatorcontrib><creatorcontrib>Li, An-Bo</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Men, Yan-Qing</creatorcontrib><creatorcontrib>Huang, Yong-Liang</creatorcontrib><title>3D Modeling Method for Dome Structure Using Digital Geological Map and DEM</title><title>ISPRS international journal of geo-information</title><description>Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting the requirement of its 3D geological modeling. Therefore, this paper takes the dome structure as an example to explore a 3D modeling method based on geological maps, DEM and related geological knowledge. The method includes: (1) adaptively calculating the attitude of points on the stratigraphic boundaries; (2) inferring and generating the bottom boundary of the model from the attitude data of the boundary points; (3) generating the model interface constrained by Bézier curves based on the bottom boundary; (4) generating the top and bottom surfaces of the stratum; and (5) stitching each surface of the geological body to generate the final dome model. Case studies of the dome in Wulongshan in China and the Richat structure in Mauritania show that this method can build a solid model of the dome based only on geological maps and DEM data, whose morphological features are basically consistent with those embodied in the section view or the model generated by traditional methods.</description><subject>Accuracy</subject><subject>attitude calculation</subject><subject>Attitudes</subject><subject>Automation</subject><subject>Curves</subject><subject>Deformation</subject><subject>digital geological map</subject><subject>dome structure</subject><subject>Domes</subject><subject>Earth science</subject><subject>Fault lines</subject><subject>Geologic mapping</subject><subject>Geological mapping</subject><subject>Geological maps</subject><subject>Geological structures</subject><subject>Geological surveys</subject><subject>Geology</subject><subject>interface generation</subject><subject>Interfaces</subject><subject>Knowledge</subject><subject>Methods</subject><subject>Mining</subject><subject>Modelling</subject><subject>Stitching</subject><subject>Stratigraphy</subject><subject>Surveying</subject><subject>Three dimensional models</subject><subject>three-dimensional geological modeling</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKU3PsASVwJ-xbGPqCmlqBEH6Nly_AiO0ro46YG_J6UIdS87uzuaWQ0Atxg9UCrRY2ibgDHiaJwuwIQQgjIpObs8w9dg1vctGktiKhiagFdawipa14VdAys3fEYLfUywjFsH34d0MMMhObjpj_cyNGHQHVy62MUmmBFWeg_1zsJyUd2AK6-73s3--hRsnhcf85ds_bZczZ_WmaG8GDJnnCHcamK0J0bivDaGaCEdsbmlAuU54QJhirTwttaaOU-LwnorOPbIODoFq5OujbpV-xS2On2rqIP6XcTUKJ2GYDqnkKNMaC1qQWrmcyFYTgSzgjCJvBT1qHV30tqn-HVw_aDaeEi78X1FeCELxjihI-v-xDIp9n1y_t8VI3UMX52HT38Ay_Z1bQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Liu, Xian-Yu</creator><creator>Li, An-Bo</creator><creator>Chen, Hao</creator><creator>Men, Yan-Qing</creator><creator>Huang, Yong-Liang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7921-9720</orcidid><orcidid>https://orcid.org/0000-0002-4281-4032</orcidid><orcidid>https://orcid.org/0000-0003-2331-0469</orcidid><orcidid>https://orcid.org/0000-0001-6964-2755</orcidid><orcidid>https://orcid.org/0000-0001-9962-470X</orcidid></search><sort><creationdate>20220601</creationdate><title>3D Modeling Method for Dome Structure Using Digital Geological Map and DEM</title><author>Liu, Xian-Yu ; Li, An-Bo ; Chen, Hao ; Men, Yan-Qing ; Huang, Yong-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ecec26da2caf2c915bcc2a89e2d5d380552680130a8fdbaa4ef377dfd861f0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>attitude calculation</topic><topic>Attitudes</topic><topic>Automation</topic><topic>Curves</topic><topic>Deformation</topic><topic>digital geological map</topic><topic>dome structure</topic><topic>Domes</topic><topic>Earth science</topic><topic>Fault lines</topic><topic>Geologic mapping</topic><topic>Geological mapping</topic><topic>Geological maps</topic><topic>Geological structures</topic><topic>Geological surveys</topic><topic>Geology</topic><topic>interface generation</topic><topic>Interfaces</topic><topic>Knowledge</topic><topic>Methods</topic><topic>Mining</topic><topic>Modelling</topic><topic>Stitching</topic><topic>Stratigraphy</topic><topic>Surveying</topic><topic>Three dimensional models</topic><topic>three-dimensional geological modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xian-Yu</creatorcontrib><creatorcontrib>Li, An-Bo</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Men, Yan-Qing</creatorcontrib><creatorcontrib>Huang, Yong-Liang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xian-Yu</au><au>Li, An-Bo</au><au>Chen, Hao</au><au>Men, Yan-Qing</au><au>Huang, Yong-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Modeling Method for Dome Structure Using Digital Geological Map and DEM</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>11</volume><issue>6</issue><spage>339</spage><pages>339-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting the requirement of its 3D geological modeling. Therefore, this paper takes the dome structure as an example to explore a 3D modeling method based on geological maps, DEM and related geological knowledge. The method includes: (1) adaptively calculating the attitude of points on the stratigraphic boundaries; (2) inferring and generating the bottom boundary of the model from the attitude data of the boundary points; (3) generating the model interface constrained by Bézier curves based on the bottom boundary; (4) generating the top and bottom surfaces of the stratum; and (5) stitching each surface of the geological body to generate the final dome model. Case studies of the dome in Wulongshan in China and the Richat structure in Mauritania show that this method can build a solid model of the dome based only on geological maps and DEM data, whose morphological features are basically consistent with those embodied in the section view or the model generated by traditional methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi11060339</doi><orcidid>https://orcid.org/0000-0002-7921-9720</orcidid><orcidid>https://orcid.org/0000-0002-4281-4032</orcidid><orcidid>https://orcid.org/0000-0003-2331-0469</orcidid><orcidid>https://orcid.org/0000-0001-6964-2755</orcidid><orcidid>https://orcid.org/0000-0001-9962-470X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2022-06, Vol.11 (6), p.339
issn 2220-9964
2220-9964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0e348aa8b82b4f58845284d82490f98b
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
attitude calculation
Attitudes
Automation
Curves
Deformation
digital geological map
dome structure
Domes
Earth science
Fault lines
Geologic mapping
Geological mapping
Geological maps
Geological structures
Geological surveys
Geology
interface generation
Interfaces
Knowledge
Methods
Mining
Modelling
Stitching
Stratigraphy
Surveying
Three dimensional models
three-dimensional geological modeling
title 3D Modeling Method for Dome Structure Using Digital Geological Map and DEM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Modeling%20Method%20for%20Dome%20Structure%20Using%20Digital%20Geological%20Map%20and%20DEM&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Liu,%20Xian-Yu&rft.date=2022-06-01&rft.volume=11&rft.issue=6&rft.spage=339&rft.pages=339-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi11060339&rft_dat=%3Cproquest_doaj_%3E2679744623%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ecec26da2caf2c915bcc2a89e2d5d380552680130a8fdbaa4ef377dfd861f0ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679744623&rft_id=info:pmid/&rfr_iscdi=true