Loading…

Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage

Highlights Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method. Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques. The sodium-ion capacitor device achieved high energy densities of 101.4 and 45...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters 2020-02, Vol.12 (1), p.48-48, Article 48
Main Authors: Wu, Yilan, Gaddam, Rohit R., Zhang, Chao, Lu, Hao, Wang, Chao, Golberg, Dmitri, Zhao, Xiu Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3
cites cdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3
container_end_page 48
container_issue 1
container_start_page 48
container_title Nano-micro letters
container_volume 12
creator Wu, Yilan
Gaddam, Rohit R.
Zhang, Chao
Lu, Hao
Wang, Chao
Golberg, Dmitri
Zhao, Xiu Song
description Highlights Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method. Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques. The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively, holding promise for practical applications. Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co 9 S 8 @NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g −1 at 100 mA g −1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co 9 S 8 nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co 9 S 8 @NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co 9 S 8 @NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF 6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively.
doi_str_mv 10.1007/s40820-020-0391-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0e3ad1085a174fb39077dd537d6fec0d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0e3ad1085a174fb39077dd537d6fec0d</doaj_id><sourcerecordid>2473254185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</originalsourceid><addsrcrecordid>eNp9kl2L1TAQhoso7rLuD_Cu4I031aRJmuRGkOPHHlhW4eh1mDTTnqxtU5NW8d-bYxdlBb0YMsy87zMhmaJ4SskLSoh8mThRNanIKZimlX5QnNdUkEoIQR_mnFFaNZI0Z8VlSt4SUXNZS8EfF2eMU6YYkefFl8MC1g8--akvd8HCsJSHdZiP3mF5A1NoYU7rgKn87pdjeeOXGHqcqjdhRlfuINowlV2I5ZXvj9VHjDkfYWqxPATn17Ha5_5hCRF6fFI86mBIeHl3XhSf3739tLuqrj-83-9eX1etUGSppCCoVa0aqhEYgkJhUdpc5lo6IsHyTlusu0Y2vLMANTBnOafESdXZll0U-43rAtyaOfoR4g8TwJtfhRB7A3Hx7YCGIANHiRJAZWYxTaR0TjDpmg5b4jLr1caaVzuia3FaIgz3oPc7kz-aPnwzUkqimMiA53eAGL6umBYz-tTiMMCEYU2mFrxmQnPeZOmzv6S3YY1TfiqTv45lJVXiv6o8T9NGS5VVdFO1MaQUsft9ZUrMaX_Mtj-GnCK7jM6eevOkrJ16jH_I_zb9BBsPxtI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353916978</pqid></control><display><type>article</type><title>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Wu, Yilan ; Gaddam, Rohit R. ; Zhang, Chao ; Lu, Hao ; Wang, Chao ; Golberg, Dmitri ; Zhao, Xiu Song</creator><creatorcontrib>Wu, Yilan ; Gaddam, Rohit R. ; Zhang, Chao ; Lu, Hao ; Wang, Chao ; Golberg, Dmitri ; Zhao, Xiu Song</creatorcontrib><description>Highlights Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method. Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques. The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively, holding promise for practical applications. Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co 9 S 8 @NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g −1 at 100 mA g −1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co 9 S 8 nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co 9 S 8 @NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co 9 S 8 @NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF 6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively.</description><identifier>ISSN: 2311-6706</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-020-0391-9</identifier><identifier>PMID: 34138307</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Anodes ; Cages ; Capacitors ; Carbon ; Cobalt sulfide ; Cobalt sulphide ; Core–shell structure ; Electrode materials ; Electrodes ; Electrolytes ; Electron conductivity ; Encapsulation ; Engineering ; Graphene ; Ion storage ; Ion transport ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Nitrogen ; Nitrogen-doped carbon ; Sodium ; Sodium-ion capacitors ; Storage capacity ; Sulfides</subject><ispartof>Nano-micro letters, 2020-02, Vol.12 (1), p.48-48, Article 48</ispartof><rights>The Author(s) 2020</rights><rights>Nano-Micro Letters is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</citedby><cites>FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2353916978?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids></links><search><creatorcontrib>Wu, Yilan</creatorcontrib><creatorcontrib>Gaddam, Rohit R.</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhao, Xiu Song</creatorcontrib><title>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><description>Highlights Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method. Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques. The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively, holding promise for practical applications. Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co 9 S 8 @NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g −1 at 100 mA g −1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co 9 S 8 nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co 9 S 8 @NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co 9 S 8 @NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF 6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively.</description><subject>Anodes</subject><subject>Cages</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Cobalt sulfide</subject><subject>Cobalt sulphide</subject><subject>Core–shell structure</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron conductivity</subject><subject>Encapsulation</subject><subject>Engineering</subject><subject>Graphene</subject><subject>Ion storage</subject><subject>Ion transport</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nitrogen</subject><subject>Nitrogen-doped carbon</subject><subject>Sodium</subject><subject>Sodium-ion capacitors</subject><subject>Storage capacity</subject><subject>Sulfides</subject><issn>2311-6706</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl2L1TAQhoso7rLuD_Cu4I031aRJmuRGkOPHHlhW4eh1mDTTnqxtU5NW8d-bYxdlBb0YMsy87zMhmaJ4SskLSoh8mThRNanIKZimlX5QnNdUkEoIQR_mnFFaNZI0Z8VlSt4SUXNZS8EfF2eMU6YYkefFl8MC1g8--akvd8HCsJSHdZiP3mF5A1NoYU7rgKn87pdjeeOXGHqcqjdhRlfuINowlV2I5ZXvj9VHjDkfYWqxPATn17Ha5_5hCRF6fFI86mBIeHl3XhSf3739tLuqrj-83-9eX1etUGSppCCoVa0aqhEYgkJhUdpc5lo6IsHyTlusu0Y2vLMANTBnOafESdXZll0U-43rAtyaOfoR4g8TwJtfhRB7A3Hx7YCGIANHiRJAZWYxTaR0TjDpmg5b4jLr1caaVzuia3FaIgz3oPc7kz-aPnwzUkqimMiA53eAGL6umBYz-tTiMMCEYU2mFrxmQnPeZOmzv6S3YY1TfiqTv45lJVXiv6o8T9NGS5VVdFO1MaQUsft9ZUrMaX_Mtj-GnCK7jM6eevOkrJ16jH_I_zb9BBsPxtI</recordid><startdate>20200212</startdate><enddate>20200212</enddate><creator>Wu, Yilan</creator><creator>Gaddam, Rohit R.</creator><creator>Zhang, Chao</creator><creator>Lu, Hao</creator><creator>Wang, Chao</creator><creator>Golberg, Dmitri</creator><creator>Zhao, Xiu Song</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200212</creationdate><title>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</title><author>Wu, Yilan ; Gaddam, Rohit R. ; Zhang, Chao ; Lu, Hao ; Wang, Chao ; Golberg, Dmitri ; Zhao, Xiu Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Cages</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Cobalt sulfide</topic><topic>Cobalt sulphide</topic><topic>Core–shell structure</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron conductivity</topic><topic>Encapsulation</topic><topic>Engineering</topic><topic>Graphene</topic><topic>Ion storage</topic><topic>Ion transport</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nitrogen</topic><topic>Nitrogen-doped carbon</topic><topic>Sodium</topic><topic>Sodium-ion capacitors</topic><topic>Storage capacity</topic><topic>Sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yilan</creatorcontrib><creatorcontrib>Gaddam, Rohit R.</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhao, Xiu Song</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yilan</au><au>Gaddam, Rohit R.</au><au>Zhang, Chao</au><au>Lu, Hao</au><au>Wang, Chao</au><au>Golberg, Dmitri</au><au>Zhao, Xiu Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><date>2020-02-12</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>48</spage><epage>48</epage><pages>48-48</pages><artnum>48</artnum><issn>2311-6706</issn><eissn>2150-5551</eissn><abstract>Highlights Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method. Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques. The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively, holding promise for practical applications. Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co 9 S 8 @NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g −1 at 100 mA g −1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co 9 S 8 nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co 9 S 8 @NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co 9 S 8 @NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF 6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg −1 at power densities of 200 and 10,000 W kg −1 , respectively.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34138307</pmid><doi>10.1007/s40820-020-0391-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-6706
ispartof Nano-micro letters, 2020-02, Vol.12 (1), p.48-48, Article 48
issn 2311-6706
2150-5551
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0e3ad1085a174fb39077dd537d6fec0d
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central
subjects Anodes
Cages
Capacitors
Carbon
Cobalt sulfide
Cobalt sulphide
Core–shell structure
Electrode materials
Electrodes
Electrolytes
Electron conductivity
Encapsulation
Engineering
Graphene
Ion storage
Ion transport
Nanoparticles
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nitrogen
Nitrogen-doped carbon
Sodium
Sodium-ion capacitors
Storage capacity
Sulfides
title Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilising%20Cobalt%20Sulphide%20Nanocapsules%20with%20Nitrogen-Doped%20Carbon%20for%20High-Performance%20Sodium-Ion%20Storage&rft.jtitle=Nano-micro%20letters&rft.au=Wu,%20Yilan&rft.date=2020-02-12&rft.volume=12&rft.issue=1&rft.spage=48&rft.epage=48&rft.pages=48-48&rft.artnum=48&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-020-0391-9&rft_dat=%3Cproquest_doaj_%3E2473254185%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353916978&rft_id=info:pmid/34138307&rfr_iscdi=true