Loading…
Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage
Highlights Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method. Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques. The sodium-ion capacitor device achieved high energy densities of 101.4 and 45...
Saved in:
Published in: | Nano-micro letters 2020-02, Vol.12 (1), p.48-48, Article 48 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 48 |
container_title | Nano-micro letters |
container_volume | 12 |
creator | Wu, Yilan Gaddam, Rohit R. Zhang, Chao Lu, Hao Wang, Chao Golberg, Dmitri Zhao, Xiu Song |
description | Highlights
Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method.
Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques.
The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively, holding promise for practical applications.
Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co
9
S
8
@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g
−1
at 100 mA g
−1
with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co
9
S
8
nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co
9
S
8
@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co
9
S
8
@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF
6
in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively. |
doi_str_mv | 10.1007/s40820-020-0391-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0e3ad1085a174fb39077dd537d6fec0d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0e3ad1085a174fb39077dd537d6fec0d</doaj_id><sourcerecordid>2473254185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</originalsourceid><addsrcrecordid>eNp9kl2L1TAQhoso7rLuD_Cu4I031aRJmuRGkOPHHlhW4eh1mDTTnqxtU5NW8d-bYxdlBb0YMsy87zMhmaJ4SskLSoh8mThRNanIKZimlX5QnNdUkEoIQR_mnFFaNZI0Z8VlSt4SUXNZS8EfF2eMU6YYkefFl8MC1g8--akvd8HCsJSHdZiP3mF5A1NoYU7rgKn87pdjeeOXGHqcqjdhRlfuINowlV2I5ZXvj9VHjDkfYWqxPATn17Ha5_5hCRF6fFI86mBIeHl3XhSf3739tLuqrj-83-9eX1etUGSppCCoVa0aqhEYgkJhUdpc5lo6IsHyTlusu0Y2vLMANTBnOafESdXZll0U-43rAtyaOfoR4g8TwJtfhRB7A3Hx7YCGIANHiRJAZWYxTaR0TjDpmg5b4jLr1caaVzuia3FaIgz3oPc7kz-aPnwzUkqimMiA53eAGL6umBYz-tTiMMCEYU2mFrxmQnPeZOmzv6S3YY1TfiqTv45lJVXiv6o8T9NGS5VVdFO1MaQUsft9ZUrMaX_Mtj-GnCK7jM6eevOkrJ16jH_I_zb9BBsPxtI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353916978</pqid></control><display><type>article</type><title>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Wu, Yilan ; Gaddam, Rohit R. ; Zhang, Chao ; Lu, Hao ; Wang, Chao ; Golberg, Dmitri ; Zhao, Xiu Song</creator><creatorcontrib>Wu, Yilan ; Gaddam, Rohit R. ; Zhang, Chao ; Lu, Hao ; Wang, Chao ; Golberg, Dmitri ; Zhao, Xiu Song</creatorcontrib><description>Highlights
Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method.
Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques.
The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively, holding promise for practical applications.
Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co
9
S
8
@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g
−1
at 100 mA g
−1
with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co
9
S
8
nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co
9
S
8
@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co
9
S
8
@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF
6
in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively.</description><identifier>ISSN: 2311-6706</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-020-0391-9</identifier><identifier>PMID: 34138307</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Anodes ; Cages ; Capacitors ; Carbon ; Cobalt sulfide ; Cobalt sulphide ; Core–shell structure ; Electrode materials ; Electrodes ; Electrolytes ; Electron conductivity ; Encapsulation ; Engineering ; Graphene ; Ion storage ; Ion transport ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Nitrogen ; Nitrogen-doped carbon ; Sodium ; Sodium-ion capacitors ; Storage capacity ; Sulfides</subject><ispartof>Nano-micro letters, 2020-02, Vol.12 (1), p.48-48, Article 48</ispartof><rights>The Author(s) 2020</rights><rights>Nano-Micro Letters is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</citedby><cites>FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2353916978?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids></links><search><creatorcontrib>Wu, Yilan</creatorcontrib><creatorcontrib>Gaddam, Rohit R.</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhao, Xiu Song</creatorcontrib><title>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><description>Highlights
Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method.
Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques.
The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively, holding promise for practical applications.
Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co
9
S
8
@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g
−1
at 100 mA g
−1
with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co
9
S
8
nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co
9
S
8
@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co
9
S
8
@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF
6
in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively.</description><subject>Anodes</subject><subject>Cages</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Cobalt sulfide</subject><subject>Cobalt sulphide</subject><subject>Core–shell structure</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron conductivity</subject><subject>Encapsulation</subject><subject>Engineering</subject><subject>Graphene</subject><subject>Ion storage</subject><subject>Ion transport</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nitrogen</subject><subject>Nitrogen-doped carbon</subject><subject>Sodium</subject><subject>Sodium-ion capacitors</subject><subject>Storage capacity</subject><subject>Sulfides</subject><issn>2311-6706</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl2L1TAQhoso7rLuD_Cu4I031aRJmuRGkOPHHlhW4eh1mDTTnqxtU5NW8d-bYxdlBb0YMsy87zMhmaJ4SskLSoh8mThRNanIKZimlX5QnNdUkEoIQR_mnFFaNZI0Z8VlSt4SUXNZS8EfF2eMU6YYkefFl8MC1g8--akvd8HCsJSHdZiP3mF5A1NoYU7rgKn87pdjeeOXGHqcqjdhRlfuINowlV2I5ZXvj9VHjDkfYWqxPATn17Ha5_5hCRF6fFI86mBIeHl3XhSf3739tLuqrj-83-9eX1etUGSppCCoVa0aqhEYgkJhUdpc5lo6IsHyTlusu0Y2vLMANTBnOafESdXZll0U-43rAtyaOfoR4g8TwJtfhRB7A3Hx7YCGIANHiRJAZWYxTaR0TjDpmg5b4jLr1caaVzuia3FaIgz3oPc7kz-aPnwzUkqimMiA53eAGL6umBYz-tTiMMCEYU2mFrxmQnPeZOmzv6S3YY1TfiqTv45lJVXiv6o8T9NGS5VVdFO1MaQUsft9ZUrMaX_Mtj-GnCK7jM6eevOkrJ16jH_I_zb9BBsPxtI</recordid><startdate>20200212</startdate><enddate>20200212</enddate><creator>Wu, Yilan</creator><creator>Gaddam, Rohit R.</creator><creator>Zhang, Chao</creator><creator>Lu, Hao</creator><creator>Wang, Chao</creator><creator>Golberg, Dmitri</creator><creator>Zhao, Xiu Song</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200212</creationdate><title>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</title><author>Wu, Yilan ; Gaddam, Rohit R. ; Zhang, Chao ; Lu, Hao ; Wang, Chao ; Golberg, Dmitri ; Zhao, Xiu Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Cages</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Cobalt sulfide</topic><topic>Cobalt sulphide</topic><topic>Core–shell structure</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron conductivity</topic><topic>Encapsulation</topic><topic>Engineering</topic><topic>Graphene</topic><topic>Ion storage</topic><topic>Ion transport</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nitrogen</topic><topic>Nitrogen-doped carbon</topic><topic>Sodium</topic><topic>Sodium-ion capacitors</topic><topic>Storage capacity</topic><topic>Sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yilan</creatorcontrib><creatorcontrib>Gaddam, Rohit R.</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhao, Xiu Song</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yilan</au><au>Gaddam, Rohit R.</au><au>Zhang, Chao</au><au>Lu, Hao</au><au>Wang, Chao</au><au>Golberg, Dmitri</au><au>Zhao, Xiu Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><date>2020-02-12</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>48</spage><epage>48</epage><pages>48-48</pages><artnum>48</artnum><issn>2311-6706</issn><eissn>2150-5551</eissn><abstract>Highlights
Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method.
Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques.
The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively, holding promise for practical applications.
Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co
9
S
8
@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g
−1
at 100 mA g
−1
with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co
9
S
8
nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co
9
S
8
@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co
9
S
8
@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF
6
in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg
−1
at power densities of 200 and 10,000 W kg
−1
, respectively.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34138307</pmid><doi>10.1007/s40820-020-0391-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-6706 |
ispartof | Nano-micro letters, 2020-02, Vol.12 (1), p.48-48, Article 48 |
issn | 2311-6706 2150-5551 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0e3ad1085a174fb39077dd537d6fec0d |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central |
subjects | Anodes Cages Capacitors Carbon Cobalt sulfide Cobalt sulphide Core–shell structure Electrode materials Electrodes Electrolytes Electron conductivity Encapsulation Engineering Graphene Ion storage Ion transport Nanoparticles Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nitrogen Nitrogen-doped carbon Sodium Sodium-ion capacitors Storage capacity Sulfides |
title | Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilising%20Cobalt%20Sulphide%20Nanocapsules%20with%20Nitrogen-Doped%20Carbon%20for%20High-Performance%20Sodium-Ion%20Storage&rft.jtitle=Nano-micro%20letters&rft.au=Wu,%20Yilan&rft.date=2020-02-12&rft.volume=12&rft.issue=1&rft.spage=48&rft.epage=48&rft.pages=48-48&rft.artnum=48&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-020-0391-9&rft_dat=%3Cproquest_doaj_%3E2473254185%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-750e9828619ea3ea8e5be7b750497d07ab4f9be2f6764fbaa2a3db4410d78fbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353916978&rft_id=info:pmid/34138307&rfr_iscdi=true |