Loading…

Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)

Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperatur...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2021-09, Vol.22 (1), p.1-687, Article 687
Main Authors: Yuan, Lingyun, Zheng, Yushan, Nie, Libing, Zhang, Liting, Wu, Ying, Zhu, Shidong, Hou, Jinfeng, Shan, Guo Lei, Liu, Tong Kun, Chen, Guohu, Tang, Xiaoyan, Wang, Chenggang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793
cites cdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793
container_end_page 687
container_issue 1
container_start_page 1
container_title BMC genomics
container_volume 22
creator Yuan, Lingyun
Zheng, Yushan
Nie, Libing
Zhang, Liting
Wu, Ying
Zhu, Shidong
Hou, Jinfeng
Shan, Guo Lei
Liu, Tong Kun
Chen, Guohu
Tang, Xiaoyan
Wang, Chenggang
description Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.
doi_str_mv 10.1186/s12864-021-07981-9
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0e85d1f0b2904ceaa009b5f252395e9f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678033076</galeid><doaj_id>oai_doaj_org_article_0e85d1f0b2904ceaa009b5f252395e9f</doaj_id><sourcerecordid>A678033076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</originalsourceid><addsrcrecordid>eNptks9u1DAQxiMEoqXwApwicWkPWcZxHDsXpLbiz0orIUE5W7POJOsqay920tJ34WFxditgEfLBluebn2fGX5a9ZrBgTNVvIytVXRVQsgJko1jRPMlOWSVZUbK6evrX-SR7EeMtAJOqFM-zE14JwSTw0-znTUAXTbC70XqHQ74LvrODdX0e6I5wiLnZoOsp5tblPTlK9_004CzP0bV5tH3KmxPGGdVOZh_a4bi5x4eYt1PYB2m7o4DjFCiPY6C4B95PBm1-fhUwRmswN5hUKWxjvlpcvMyedakCevW4n2XfPry_uf5UrD5_XF5frgojZDUWqmsrUgwkJwF83kzZKWDruoHUaL2GBqQkqBAMcmmgUliJphSkDCfZ8LNseeC2Hm_1Ltgthgft0er9hQ-9xjBaM5AGUqJlHazLxDaECNCsRVeKkjeCmi6x3h1Yu2m9pdaQS2MZjqDHEWc3uvd3WlWirps6Ac4fAcF_n9Iw9NZGQ8OAjvwUdSmkULwCPtf95h_prZ9C-o1ZpTjUChT7o-oxNWBd59O7Zobqy1oq4Glk87OL_6jSamlrjXeUXEHHCRdHCUkz0o-xxylGvfz65VhbHrQm-BgDdb_nwUDPXtYHL-vkZb33sm74L2MD5g4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583068081</pqid></control><display><type>article</type><title>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yuan, Lingyun ; Zheng, Yushan ; Nie, Libing ; Zhang, Liting ; Wu, Ying ; Zhu, Shidong ; Hou, Jinfeng ; Shan, Guo Lei ; Liu, Tong Kun ; Chen, Guohu ; Tang, Xiaoyan ; Wang, Chenggang</creator><creatorcontrib>Yuan, Lingyun ; Zheng, Yushan ; Nie, Libing ; Zhang, Liting ; Wu, Ying ; Zhu, Shidong ; Hou, Jinfeng ; Shan, Guo Lei ; Liu, Tong Kun ; Chen, Guohu ; Tang, Xiaoyan ; Wang, Chenggang</creatorcontrib><description>Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-021-07981-9</identifier><identifier>PMID: 34551703</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Abiotic stress ; Analysis ; Annotations ; Brassica ; Brassica campestris ; BrLhc superfamily ; Cell cycle ; Chinese cabbage ; Cold ; Cold tolerance ; Differentially expressed genes ; Encyclopedias ; Environmental aspects ; Gene expression ; Gene regulation ; Genes ; Genetic aspects ; Genomes ; Genomics ; Growth ; Heat ; Heat resistance ; High temperature ; High temperature environments ; Homeostasis ; Identification and classification ; Kinases ; Lipid peroxidation ; Lipids ; Low temperature ; Metabolism ; Methods ; Morphology ; Photosynthesis ; Physiology ; Plant heat tolerance ; Plant resistance ; Proteins ; RNA sequencing ; RNA-Seq ; Seedlings ; Signal transduction ; Temperature stress ; Temperature tolerance ; Tobacco ; Transcription ; Transcription factors ; Wucai</subject><ispartof>BMC genomics, 2021-09, Vol.22 (1), p.1-687, Article 687</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</citedby><cites>FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456696/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2583068081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Yuan, Lingyun</creatorcontrib><creatorcontrib>Zheng, Yushan</creatorcontrib><creatorcontrib>Nie, Libing</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Zhu, Shidong</creatorcontrib><creatorcontrib>Hou, Jinfeng</creatorcontrib><creatorcontrib>Shan, Guo Lei</creatorcontrib><creatorcontrib>Liu, Tong Kun</creatorcontrib><creatorcontrib>Chen, Guohu</creatorcontrib><creatorcontrib>Tang, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><title>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</title><title>BMC genomics</title><description>Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.</description><subject>Abiotic stress</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Brassica</subject><subject>Brassica campestris</subject><subject>BrLhc superfamily</subject><subject>Cell cycle</subject><subject>Chinese cabbage</subject><subject>Cold</subject><subject>Cold tolerance</subject><subject>Differentially expressed genes</subject><subject>Encyclopedias</subject><subject>Environmental aspects</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Growth</subject><subject>Heat</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>High temperature environments</subject><subject>Homeostasis</subject><subject>Identification and classification</subject><subject>Kinases</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Morphology</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant heat tolerance</subject><subject>Plant resistance</subject><subject>Proteins</subject><subject>RNA sequencing</subject><subject>RNA-Seq</subject><subject>Seedlings</subject><subject>Signal transduction</subject><subject>Temperature stress</subject><subject>Temperature tolerance</subject><subject>Tobacco</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Wucai</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9u1DAQxiMEoqXwApwicWkPWcZxHDsXpLbiz0orIUE5W7POJOsqay920tJ34WFxditgEfLBluebn2fGX5a9ZrBgTNVvIytVXRVQsgJko1jRPMlOWSVZUbK6evrX-SR7EeMtAJOqFM-zE14JwSTw0-znTUAXTbC70XqHQ74LvrODdX0e6I5wiLnZoOsp5tblPTlK9_004CzP0bV5tH3KmxPGGdVOZh_a4bi5x4eYt1PYB2m7o4DjFCiPY6C4B95PBm1-fhUwRmswN5hUKWxjvlpcvMyedakCevW4n2XfPry_uf5UrD5_XF5frgojZDUWqmsrUgwkJwF83kzZKWDruoHUaL2GBqQkqBAMcmmgUliJphSkDCfZ8LNseeC2Hm_1Ltgthgft0er9hQ-9xjBaM5AGUqJlHazLxDaECNCsRVeKkjeCmi6x3h1Yu2m9pdaQS2MZjqDHEWc3uvd3WlWirps6Ac4fAcF_n9Iw9NZGQ8OAjvwUdSmkULwCPtf95h_prZ9C-o1ZpTjUChT7o-oxNWBd59O7Zobqy1oq4Glk87OL_6jSamlrjXeUXEHHCRdHCUkz0o-xxylGvfz65VhbHrQm-BgDdb_nwUDPXtYHL-vkZb33sm74L2MD5g4</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Yuan, Lingyun</creator><creator>Zheng, Yushan</creator><creator>Nie, Libing</creator><creator>Zhang, Liting</creator><creator>Wu, Ying</creator><creator>Zhu, Shidong</creator><creator>Hou, Jinfeng</creator><creator>Shan, Guo Lei</creator><creator>Liu, Tong Kun</creator><creator>Chen, Guohu</creator><creator>Tang, Xiaoyan</creator><creator>Wang, Chenggang</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210922</creationdate><title>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</title><author>Yuan, Lingyun ; Zheng, Yushan ; Nie, Libing ; Zhang, Liting ; Wu, Ying ; Zhu, Shidong ; Hou, Jinfeng ; Shan, Guo Lei ; Liu, Tong Kun ; Chen, Guohu ; Tang, Xiaoyan ; Wang, Chenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Brassica</topic><topic>Brassica campestris</topic><topic>BrLhc superfamily</topic><topic>Cell cycle</topic><topic>Chinese cabbage</topic><topic>Cold</topic><topic>Cold tolerance</topic><topic>Differentially expressed genes</topic><topic>Encyclopedias</topic><topic>Environmental aspects</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Growth</topic><topic>Heat</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>High temperature environments</topic><topic>Homeostasis</topic><topic>Identification and classification</topic><topic>Kinases</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Morphology</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant heat tolerance</topic><topic>Plant resistance</topic><topic>Proteins</topic><topic>RNA sequencing</topic><topic>RNA-Seq</topic><topic>Seedlings</topic><topic>Signal transduction</topic><topic>Temperature stress</topic><topic>Temperature tolerance</topic><topic>Tobacco</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Wucai</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Lingyun</creatorcontrib><creatorcontrib>Zheng, Yushan</creatorcontrib><creatorcontrib>Nie, Libing</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Zhu, Shidong</creatorcontrib><creatorcontrib>Hou, Jinfeng</creatorcontrib><creatorcontrib>Shan, Guo Lei</creatorcontrib><creatorcontrib>Liu, Tong Kun</creatorcontrib><creatorcontrib>Chen, Guohu</creatorcontrib><creatorcontrib>Tang, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Lingyun</au><au>Zheng, Yushan</au><au>Nie, Libing</au><au>Zhang, Liting</au><au>Wu, Ying</au><au>Zhu, Shidong</au><au>Hou, Jinfeng</au><au>Shan, Guo Lei</au><au>Liu, Tong Kun</au><au>Chen, Guohu</au><au>Tang, Xiaoyan</au><au>Wang, Chenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</atitle><jtitle>BMC genomics</jtitle><date>2021-09-22</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>687</epage><pages>1-687</pages><artnum>687</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>34551703</pmid><doi>10.1186/s12864-021-07981-9</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2021-09, Vol.22 (1), p.1-687, Article 687
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0e85d1f0b2904ceaa009b5f252395e9f
source Publicly Available Content Database; PubMed Central
subjects Abiotic stress
Analysis
Annotations
Brassica
Brassica campestris
BrLhc superfamily
Cell cycle
Chinese cabbage
Cold
Cold tolerance
Differentially expressed genes
Encyclopedias
Environmental aspects
Gene expression
Gene regulation
Genes
Genetic aspects
Genomes
Genomics
Growth
Heat
Heat resistance
High temperature
High temperature environments
Homeostasis
Identification and classification
Kinases
Lipid peroxidation
Lipids
Low temperature
Metabolism
Methods
Morphology
Photosynthesis
Physiology
Plant heat tolerance
Plant resistance
Proteins
RNA sequencing
RNA-Seq
Seedlings
Signal transduction
Temperature stress
Temperature tolerance
Tobacco
Transcription
Transcription factors
Wucai
title Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20reveals%20changes%20in%20gene%20regulation%20and%20signaling%20transduction%20pathways%20during%20temperature%20stress%20in%20wucai%20(Brassica%20campestris%20L.)&rft.jtitle=BMC%20genomics&rft.au=Yuan,%20Lingyun&rft.date=2021-09-22&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=687&rft.pages=1-687&rft.artnum=687&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-021-07981-9&rft_dat=%3Cgale_doaj_%3EA678033076%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583068081&rft_id=info:pmid/34551703&rft_galeid=A678033076&rfr_iscdi=true