Loading…
Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)
Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperatur...
Saved in:
Published in: | BMC genomics 2021-09, Vol.22 (1), p.1-687, Article 687 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793 |
---|---|
cites | cdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793 |
container_end_page | 687 |
container_issue | 1 |
container_start_page | 1 |
container_title | BMC genomics |
container_volume | 22 |
creator | Yuan, Lingyun Zheng, Yushan Nie, Libing Zhang, Liting Wu, Ying Zhu, Shidong Hou, Jinfeng Shan, Guo Lei Liu, Tong Kun Chen, Guohu Tang, Xiaoyan Wang, Chenggang |
description | Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants. |
doi_str_mv | 10.1186/s12864-021-07981-9 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0e85d1f0b2904ceaa009b5f252395e9f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678033076</galeid><doaj_id>oai_doaj_org_article_0e85d1f0b2904ceaa009b5f252395e9f</doaj_id><sourcerecordid>A678033076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</originalsourceid><addsrcrecordid>eNptks9u1DAQxiMEoqXwApwicWkPWcZxHDsXpLbiz0orIUE5W7POJOsqay920tJ34WFxditgEfLBluebn2fGX5a9ZrBgTNVvIytVXRVQsgJko1jRPMlOWSVZUbK6evrX-SR7EeMtAJOqFM-zE14JwSTw0-znTUAXTbC70XqHQ74LvrODdX0e6I5wiLnZoOsp5tblPTlK9_004CzP0bV5tH3KmxPGGdVOZh_a4bi5x4eYt1PYB2m7o4DjFCiPY6C4B95PBm1-fhUwRmswN5hUKWxjvlpcvMyedakCevW4n2XfPry_uf5UrD5_XF5frgojZDUWqmsrUgwkJwF83kzZKWDruoHUaL2GBqQkqBAMcmmgUliJphSkDCfZ8LNseeC2Hm_1Ltgthgft0er9hQ-9xjBaM5AGUqJlHazLxDaECNCsRVeKkjeCmi6x3h1Yu2m9pdaQS2MZjqDHEWc3uvd3WlWirps6Ac4fAcF_n9Iw9NZGQ8OAjvwUdSmkULwCPtf95h_prZ9C-o1ZpTjUChT7o-oxNWBd59O7Zobqy1oq4Glk87OL_6jSamlrjXeUXEHHCRdHCUkz0o-xxylGvfz65VhbHrQm-BgDdb_nwUDPXtYHL-vkZb33sm74L2MD5g4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583068081</pqid></control><display><type>article</type><title>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yuan, Lingyun ; Zheng, Yushan ; Nie, Libing ; Zhang, Liting ; Wu, Ying ; Zhu, Shidong ; Hou, Jinfeng ; Shan, Guo Lei ; Liu, Tong Kun ; Chen, Guohu ; Tang, Xiaoyan ; Wang, Chenggang</creator><creatorcontrib>Yuan, Lingyun ; Zheng, Yushan ; Nie, Libing ; Zhang, Liting ; Wu, Ying ; Zhu, Shidong ; Hou, Jinfeng ; Shan, Guo Lei ; Liu, Tong Kun ; Chen, Guohu ; Tang, Xiaoyan ; Wang, Chenggang</creatorcontrib><description>Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-021-07981-9</identifier><identifier>PMID: 34551703</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Abiotic stress ; Analysis ; Annotations ; Brassica ; Brassica campestris ; BrLhc superfamily ; Cell cycle ; Chinese cabbage ; Cold ; Cold tolerance ; Differentially expressed genes ; Encyclopedias ; Environmental aspects ; Gene expression ; Gene regulation ; Genes ; Genetic aspects ; Genomes ; Genomics ; Growth ; Heat ; Heat resistance ; High temperature ; High temperature environments ; Homeostasis ; Identification and classification ; Kinases ; Lipid peroxidation ; Lipids ; Low temperature ; Metabolism ; Methods ; Morphology ; Photosynthesis ; Physiology ; Plant heat tolerance ; Plant resistance ; Proteins ; RNA sequencing ; RNA-Seq ; Seedlings ; Signal transduction ; Temperature stress ; Temperature tolerance ; Tobacco ; Transcription ; Transcription factors ; Wucai</subject><ispartof>BMC genomics, 2021-09, Vol.22 (1), p.1-687, Article 687</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</citedby><cites>FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456696/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2583068081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Yuan, Lingyun</creatorcontrib><creatorcontrib>Zheng, Yushan</creatorcontrib><creatorcontrib>Nie, Libing</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Zhu, Shidong</creatorcontrib><creatorcontrib>Hou, Jinfeng</creatorcontrib><creatorcontrib>Shan, Guo Lei</creatorcontrib><creatorcontrib>Liu, Tong Kun</creatorcontrib><creatorcontrib>Chen, Guohu</creatorcontrib><creatorcontrib>Tang, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><title>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</title><title>BMC genomics</title><description>Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.</description><subject>Abiotic stress</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Brassica</subject><subject>Brassica campestris</subject><subject>BrLhc superfamily</subject><subject>Cell cycle</subject><subject>Chinese cabbage</subject><subject>Cold</subject><subject>Cold tolerance</subject><subject>Differentially expressed genes</subject><subject>Encyclopedias</subject><subject>Environmental aspects</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Growth</subject><subject>Heat</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>High temperature environments</subject><subject>Homeostasis</subject><subject>Identification and classification</subject><subject>Kinases</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Morphology</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant heat tolerance</subject><subject>Plant resistance</subject><subject>Proteins</subject><subject>RNA sequencing</subject><subject>RNA-Seq</subject><subject>Seedlings</subject><subject>Signal transduction</subject><subject>Temperature stress</subject><subject>Temperature tolerance</subject><subject>Tobacco</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Wucai</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9u1DAQxiMEoqXwApwicWkPWcZxHDsXpLbiz0orIUE5W7POJOsqay920tJ34WFxditgEfLBluebn2fGX5a9ZrBgTNVvIytVXRVQsgJko1jRPMlOWSVZUbK6evrX-SR7EeMtAJOqFM-zE14JwSTw0-znTUAXTbC70XqHQ74LvrODdX0e6I5wiLnZoOsp5tblPTlK9_004CzP0bV5tH3KmxPGGdVOZh_a4bi5x4eYt1PYB2m7o4DjFCiPY6C4B95PBm1-fhUwRmswN5hUKWxjvlpcvMyedakCevW4n2XfPry_uf5UrD5_XF5frgojZDUWqmsrUgwkJwF83kzZKWDruoHUaL2GBqQkqBAMcmmgUliJphSkDCfZ8LNseeC2Hm_1Ltgthgft0er9hQ-9xjBaM5AGUqJlHazLxDaECNCsRVeKkjeCmi6x3h1Yu2m9pdaQS2MZjqDHEWc3uvd3WlWirps6Ac4fAcF_n9Iw9NZGQ8OAjvwUdSmkULwCPtf95h_prZ9C-o1ZpTjUChT7o-oxNWBd59O7Zobqy1oq4Glk87OL_6jSamlrjXeUXEHHCRdHCUkz0o-xxylGvfz65VhbHrQm-BgDdb_nwUDPXtYHL-vkZb33sm74L2MD5g4</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Yuan, Lingyun</creator><creator>Zheng, Yushan</creator><creator>Nie, Libing</creator><creator>Zhang, Liting</creator><creator>Wu, Ying</creator><creator>Zhu, Shidong</creator><creator>Hou, Jinfeng</creator><creator>Shan, Guo Lei</creator><creator>Liu, Tong Kun</creator><creator>Chen, Guohu</creator><creator>Tang, Xiaoyan</creator><creator>Wang, Chenggang</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210922</creationdate><title>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</title><author>Yuan, Lingyun ; Zheng, Yushan ; Nie, Libing ; Zhang, Liting ; Wu, Ying ; Zhu, Shidong ; Hou, Jinfeng ; Shan, Guo Lei ; Liu, Tong Kun ; Chen, Guohu ; Tang, Xiaoyan ; Wang, Chenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Brassica</topic><topic>Brassica campestris</topic><topic>BrLhc superfamily</topic><topic>Cell cycle</topic><topic>Chinese cabbage</topic><topic>Cold</topic><topic>Cold tolerance</topic><topic>Differentially expressed genes</topic><topic>Encyclopedias</topic><topic>Environmental aspects</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Growth</topic><topic>Heat</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>High temperature environments</topic><topic>Homeostasis</topic><topic>Identification and classification</topic><topic>Kinases</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Morphology</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant heat tolerance</topic><topic>Plant resistance</topic><topic>Proteins</topic><topic>RNA sequencing</topic><topic>RNA-Seq</topic><topic>Seedlings</topic><topic>Signal transduction</topic><topic>Temperature stress</topic><topic>Temperature tolerance</topic><topic>Tobacco</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Wucai</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Lingyun</creatorcontrib><creatorcontrib>Zheng, Yushan</creatorcontrib><creatorcontrib>Nie, Libing</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Zhu, Shidong</creatorcontrib><creatorcontrib>Hou, Jinfeng</creatorcontrib><creatorcontrib>Shan, Guo Lei</creatorcontrib><creatorcontrib>Liu, Tong Kun</creatorcontrib><creatorcontrib>Chen, Guohu</creatorcontrib><creatorcontrib>Tang, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Lingyun</au><au>Zheng, Yushan</au><au>Nie, Libing</au><au>Zhang, Liting</au><au>Wu, Ying</au><au>Zhu, Shidong</au><au>Hou, Jinfeng</au><au>Shan, Guo Lei</au><au>Liu, Tong Kun</au><au>Chen, Guohu</au><au>Tang, Xiaoyan</au><au>Wang, Chenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.)</atitle><jtitle>BMC genomics</jtitle><date>2021-09-22</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>687</epage><pages>1-687</pages><artnum>687</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>34551703</pmid><doi>10.1186/s12864-021-07981-9</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2021-09, Vol.22 (1), p.1-687, Article 687 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0e85d1f0b2904ceaa009b5f252395e9f |
source | Publicly Available Content Database; PubMed Central |
subjects | Abiotic stress Analysis Annotations Brassica Brassica campestris BrLhc superfamily Cell cycle Chinese cabbage Cold Cold tolerance Differentially expressed genes Encyclopedias Environmental aspects Gene expression Gene regulation Genes Genetic aspects Genomes Genomics Growth Heat Heat resistance High temperature High temperature environments Homeostasis Identification and classification Kinases Lipid peroxidation Lipids Low temperature Metabolism Methods Morphology Photosynthesis Physiology Plant heat tolerance Plant resistance Proteins RNA sequencing RNA-Seq Seedlings Signal transduction Temperature stress Temperature tolerance Tobacco Transcription Transcription factors Wucai |
title | Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20reveals%20changes%20in%20gene%20regulation%20and%20signaling%20transduction%20pathways%20during%20temperature%20stress%20in%20wucai%20(Brassica%20campestris%20L.)&rft.jtitle=BMC%20genomics&rft.au=Yuan,%20Lingyun&rft.date=2021-09-22&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=687&rft.pages=1-687&rft.artnum=687&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-021-07981-9&rft_dat=%3Cgale_doaj_%3EA678033076%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-8fd4e81073e503073ec2f801b6904556b09077e04a0ca37c048a45925e8c3e793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583068081&rft_id=info:pmid/34551703&rft_galeid=A678033076&rfr_iscdi=true |