Loading…

Fabrication and Optimization of a Lipase Immobilized Enzymatic Membrane Bioreactor based on Polysulfone Gradient-Pore Hollow Fiber Membrane

Enzymatic membrane bioreactors (EMBRs) possess the characteristic of combining catalysis with separation, and therefore have promising application potentials. In order to achieve a high-performance EMBR, membrane property, as well as operating parameters, should give special cause for concerns. In t...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2019-06, Vol.9 (6), p.495
Main Authors: Chen, Peng-Cheng, Ma, Zhen, Zhu, Xue-Yan, Chen, Da-Jing, Huang, Xiao-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzymatic membrane bioreactors (EMBRs) possess the characteristic of combining catalysis with separation, and therefore have promising application potentials. In order to achieve a high-performance EMBR, membrane property, as well as operating parameters, should give special cause for concerns. In this work, an EMBR based on hollow fiber polysulfone microfiltration membranes with radial gradient pore structure was fabricated and enzyme immobilization was achieved through pressure-driven filtration. Lipase from Candida rugosa was used for immobilization and EMBR performance was studied with the enzymatic hydrolysis of glycerol triacetate as a model reaction. The influences of membrane pore diameter, substrate feed direction as well as operational parameters of operation pressure, substrate concentration, and temperature on the EMBR activity were investigated with the production of hydrolysates kinetically fitted. The complete EMBR system showed the highest activity of 1.07 × 104 U⋅g−1. The results in this work indicate future efforts for improvement in EMBR.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal9060495