Loading…

Analytical Modeling and Application for Semi-Circular Notch Flexure Hinges

Flexure-based compliant mechanisms can be used to achieve bio-imitability and adaptability in the applications of biomedical engineering. However, a nonlinear load-displacement profile increases the design complexity of this type of compliant mechanism, especially when the cross-section of the flexu...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-08, Vol.13 (16), p.9248
Main Authors: Meng, Qiaoling, Chen, Zhongzhe, Kang, Haolun, Shen, Zhijia, Yu, Hongliu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c389t-523f6749ab50540e9335c93fb2930394b34248b599ce5106dcc6e2a78b4b81023
container_end_page
container_issue 16
container_start_page 9248
container_title Applied sciences
container_volume 13
creator Meng, Qiaoling
Chen, Zhongzhe
Kang, Haolun
Shen, Zhijia
Yu, Hongliu
description Flexure-based compliant mechanisms can be used to achieve bio-imitability and adaptability in the applications of biomedical engineering. However, a nonlinear load-displacement profile increases the design complexity of this type of compliant mechanism, especially when the cross-section of the flexure hinge is not constant. This paper proposes two general analytical models by analyzing the compliance and stress characteristics of the semi-circular notch flexure hinge undergoing large deflections, which is a typical variable cross-section of a flexure hinge, based on the Castigliano’s second theorem and the finite elements analysis method. As a case study for verification, three compliant four-bar linkage mechanisms are designed based on the proposed design approach, the design method proposed by Howell, and the equations proposed by Lobontiu, respectively. The results show that the design accuracy is improved 36% in comparison with designs from Howell and Lobontiu. Finally, a flexure-based artificial finger is designed and manufactured based on the proposed optimization approach. The performance test of the prototype shows that the artificial finger has good bio-imitability and adaptability with respect to joint movements.
doi_str_mv 10.3390/app13169248
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0ea9e483a34549b993a4a42d577ff683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762475941</galeid><doaj_id>oai_doaj_org_article_0ea9e483a34549b993a4a42d577ff683</doaj_id><sourcerecordid>A762475941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-523f6749ab50540e9335c93fb2930394b34248b599ce5106dcc6e2a78b4b81023</originalsourceid><addsrcrecordid>eNptUU1LLDEQHOQJinryDwx4fIwm6SQzOS6LPhU_Duo59GSSNcvsZExmwf33Rld8CnYOHYqqoqu7KI4pOQVQ5AzHkQKVivFmp9hnpJYVcFr_-fbfK45SWpJcikJDyX5xPRuw30zeYF_ehs72fliUOHTlbBz7jE4-DKULsXywK1_NfTTrHmN5FybzXF709nUdbXmZRTYdFrsO-2SPPvtB8XRx_ji_rG7u_13NZzeVgUZNlWDgZM0VtoIITqwCEEaBa5kCAoq3wHOCVihlrKBEdsZIy7BuWt7mkRkcFFdb3y7gUo_RrzBudECvP4AQFxpjTtRbTSwqyxtA4IKrVilAjpx1oq6dkw1kr5Ot1xjDy9qmSS_DOuaVJM0aIRsCUrD_rAVmUz-4MEU0K5-MntWS8VooTjPr9BdWfl1enQmDdT7jPwR_twITQ0rRuq8wlOj3k-pvJ4U3tS2PIw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856803652</pqid></control><display><type>article</type><title>Analytical Modeling and Application for Semi-Circular Notch Flexure Hinges</title><source>Publicly Available Content Database</source><creator>Meng, Qiaoling ; Chen, Zhongzhe ; Kang, Haolun ; Shen, Zhijia ; Yu, Hongliu</creator><creatorcontrib>Meng, Qiaoling ; Chen, Zhongzhe ; Kang, Haolun ; Shen, Zhijia ; Yu, Hongliu</creatorcontrib><description>Flexure-based compliant mechanisms can be used to achieve bio-imitability and adaptability in the applications of biomedical engineering. However, a nonlinear load-displacement profile increases the design complexity of this type of compliant mechanism, especially when the cross-section of the flexure hinge is not constant. This paper proposes two general analytical models by analyzing the compliance and stress characteristics of the semi-circular notch flexure hinge undergoing large deflections, which is a typical variable cross-section of a flexure hinge, based on the Castigliano’s second theorem and the finite elements analysis method. As a case study for verification, three compliant four-bar linkage mechanisms are designed based on the proposed design approach, the design method proposed by Howell, and the equations proposed by Lobontiu, respectively. The results show that the design accuracy is improved 36% in comparison with designs from Howell and Lobontiu. Finally, a flexure-based artificial finger is designed and manufactured based on the proposed optimization approach. The performance test of the prototype shows that the artificial finger has good bio-imitability and adaptability with respect to joint movements.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13169248</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; artificial finger ; Biomedical engineering ; Case studies ; Compliance ; compliant characteristics ; Deformation ; Design ; Finite element analysis ; Optimization ; rotation angle ; semi-circular notch flexure hinge ; stress analysis ; Stress concentration</subject><ispartof>Applied sciences, 2023-08, Vol.13 (16), p.9248</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-523f6749ab50540e9335c93fb2930394b34248b599ce5106dcc6e2a78b4b81023</cites><orcidid>0000-0002-0240-4004 ; 0000-0001-6901-5145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2856803652/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2856803652?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Meng, Qiaoling</creatorcontrib><creatorcontrib>Chen, Zhongzhe</creatorcontrib><creatorcontrib>Kang, Haolun</creatorcontrib><creatorcontrib>Shen, Zhijia</creatorcontrib><creatorcontrib>Yu, Hongliu</creatorcontrib><title>Analytical Modeling and Application for Semi-Circular Notch Flexure Hinges</title><title>Applied sciences</title><description>Flexure-based compliant mechanisms can be used to achieve bio-imitability and adaptability in the applications of biomedical engineering. However, a nonlinear load-displacement profile increases the design complexity of this type of compliant mechanism, especially when the cross-section of the flexure hinge is not constant. This paper proposes two general analytical models by analyzing the compliance and stress characteristics of the semi-circular notch flexure hinge undergoing large deflections, which is a typical variable cross-section of a flexure hinge, based on the Castigliano’s second theorem and the finite elements analysis method. As a case study for verification, three compliant four-bar linkage mechanisms are designed based on the proposed design approach, the design method proposed by Howell, and the equations proposed by Lobontiu, respectively. The results show that the design accuracy is improved 36% in comparison with designs from Howell and Lobontiu. Finally, a flexure-based artificial finger is designed and manufactured based on the proposed optimization approach. The performance test of the prototype shows that the artificial finger has good bio-imitability and adaptability with respect to joint movements.</description><subject>Accuracy</subject><subject>artificial finger</subject><subject>Biomedical engineering</subject><subject>Case studies</subject><subject>Compliance</subject><subject>compliant characteristics</subject><subject>Deformation</subject><subject>Design</subject><subject>Finite element analysis</subject><subject>Optimization</subject><subject>rotation angle</subject><subject>semi-circular notch flexure hinge</subject><subject>stress analysis</subject><subject>Stress concentration</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LLDEQHOQJinryDwx4fIwm6SQzOS6LPhU_Duo59GSSNcvsZExmwf33Rld8CnYOHYqqoqu7KI4pOQVQ5AzHkQKVivFmp9hnpJYVcFr_-fbfK45SWpJcikJDyX5xPRuw30zeYF_ehs72fliUOHTlbBz7jE4-DKULsXywK1_NfTTrHmN5FybzXF709nUdbXmZRTYdFrsO-2SPPvtB8XRx_ji_rG7u_13NZzeVgUZNlWDgZM0VtoIITqwCEEaBa5kCAoq3wHOCVihlrKBEdsZIy7BuWt7mkRkcFFdb3y7gUo_RrzBudECvP4AQFxpjTtRbTSwqyxtA4IKrVilAjpx1oq6dkw1kr5Ot1xjDy9qmSS_DOuaVJM0aIRsCUrD_rAVmUz-4MEU0K5-MntWS8VooTjPr9BdWfl1enQmDdT7jPwR_twITQ0rRuq8wlOj3k-pvJ4U3tS2PIw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Meng, Qiaoling</creator><creator>Chen, Zhongzhe</creator><creator>Kang, Haolun</creator><creator>Shen, Zhijia</creator><creator>Yu, Hongliu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0240-4004</orcidid><orcidid>https://orcid.org/0000-0001-6901-5145</orcidid></search><sort><creationdate>20230801</creationdate><title>Analytical Modeling and Application for Semi-Circular Notch Flexure Hinges</title><author>Meng, Qiaoling ; Chen, Zhongzhe ; Kang, Haolun ; Shen, Zhijia ; Yu, Hongliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-523f6749ab50540e9335c93fb2930394b34248b599ce5106dcc6e2a78b4b81023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>artificial finger</topic><topic>Biomedical engineering</topic><topic>Case studies</topic><topic>Compliance</topic><topic>compliant characteristics</topic><topic>Deformation</topic><topic>Design</topic><topic>Finite element analysis</topic><topic>Optimization</topic><topic>rotation angle</topic><topic>semi-circular notch flexure hinge</topic><topic>stress analysis</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Qiaoling</creatorcontrib><creatorcontrib>Chen, Zhongzhe</creatorcontrib><creatorcontrib>Kang, Haolun</creatorcontrib><creatorcontrib>Shen, Zhijia</creatorcontrib><creatorcontrib>Yu, Hongliu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Qiaoling</au><au>Chen, Zhongzhe</au><au>Kang, Haolun</au><au>Shen, Zhijia</au><au>Yu, Hongliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Modeling and Application for Semi-Circular Notch Flexure Hinges</atitle><jtitle>Applied sciences</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>16</issue><spage>9248</spage><pages>9248-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Flexure-based compliant mechanisms can be used to achieve bio-imitability and adaptability in the applications of biomedical engineering. However, a nonlinear load-displacement profile increases the design complexity of this type of compliant mechanism, especially when the cross-section of the flexure hinge is not constant. This paper proposes two general analytical models by analyzing the compliance and stress characteristics of the semi-circular notch flexure hinge undergoing large deflections, which is a typical variable cross-section of a flexure hinge, based on the Castigliano’s second theorem and the finite elements analysis method. As a case study for verification, three compliant four-bar linkage mechanisms are designed based on the proposed design approach, the design method proposed by Howell, and the equations proposed by Lobontiu, respectively. The results show that the design accuracy is improved 36% in comparison with designs from Howell and Lobontiu. Finally, a flexure-based artificial finger is designed and manufactured based on the proposed optimization approach. The performance test of the prototype shows that the artificial finger has good bio-imitability and adaptability with respect to joint movements.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13169248</doi><orcidid>https://orcid.org/0000-0002-0240-4004</orcidid><orcidid>https://orcid.org/0000-0001-6901-5145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-08, Vol.13 (16), p.9248
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0ea9e483a34549b993a4a42d577ff683
source Publicly Available Content Database
subjects Accuracy
artificial finger
Biomedical engineering
Case studies
Compliance
compliant characteristics
Deformation
Design
Finite element analysis
Optimization
rotation angle
semi-circular notch flexure hinge
stress analysis
Stress concentration
title Analytical Modeling and Application for Semi-Circular Notch Flexure Hinges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Modeling%20and%20Application%20for%20Semi-Circular%20Notch%20Flexure%20Hinges&rft.jtitle=Applied%20sciences&rft.au=Meng,%20Qiaoling&rft.date=2023-08-01&rft.volume=13&rft.issue=16&rft.spage=9248&rft.pages=9248-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13169248&rft_dat=%3Cgale_doaj_%3EA762475941%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-523f6749ab50540e9335c93fb2930394b34248b599ce5106dcc6e2a78b4b81023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856803652&rft_id=info:pmid/&rft_galeid=A762475941&rfr_iscdi=true