Loading…
Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles
The most common infusion in southern Latin-American countries is prepared with dried leaves of Ilex paraguariensis A. St.-Hil., an aboriginal ancestral beverage known for its high polyphenols concentration currently consumed in > 90% of homes in Argentina, in Paraguay and Uruguay. The economy of...
Saved in:
Published in: | BMC genomics 2018-12, Vol.19 (1), p.891-891, Article 891 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-26dbf1f521dc23b62e85d303eaf7aa50df06df0aa106b18bab2040699b9f492c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-26dbf1f521dc23b62e85d303eaf7aa50df06df0aa106b18bab2040699b9f492c3 |
container_end_page | 891 |
container_issue | 1 |
container_start_page | 891 |
container_title | BMC genomics |
container_volume | 19 |
creator | Fay, Jessica V Watkins, Christopher J Shrestha, Ram K Litwiñiuk, Sergio L Talavera Stefani, Liliana N Rojas, Cristian A Argüelles, Carina F Ferreras, Julian A Caccamo, Mario Miretti, Marcos M |
description | The most common infusion in southern Latin-American countries is prepared with dried leaves of Ilex paraguariensis A. St.-Hil., an aboriginal ancestral beverage known for its high polyphenols concentration currently consumed in > 90% of homes in Argentina, in Paraguay and Uruguay. The economy of entire provinces heavily relies on the production, collection and manufacture of Ilex paraguariensis, the fifth plant species with highest antioxidant activity. Polyphenols are associated to relevant health benefits including strong antioxidant properties. Despite its regional relevance and potential biotechnological applications, little is known about functional genomics and genetics underlying phenotypic variation of relevant traits. By generating tissue specific transcriptomic profiles, we aimed to comprehensively annotate genes in the Ilex paraguariensis phenylpropanoid pathway and to evaluate differential expression profiles.
In this study we generated a reliable transcriptome assembly based on a collection of 15 RNA-Seq libraries from different tissues of Ilex paraguariensis. A total of 554 million RNA-Seq reads were assembled into 193,897 transcripts, where 24,612 annotated full-length transcripts had complete ORF. We assessed the transcriptome assembly quality, completeness and accuracy using BUSCO and TransRate; consistency was also evaluated by experimentally validating 11 predicted genes by PCR and sequencing. Functional annotation against KEGG Pathway database identified 1395 unigenes involved in biosynthesis of secondary metabolites, 531 annotated transcripts corresponded to the phenylpropanoid pathway. The top 30 differentially expressed genes among tissue revealed genes involved in photosynthesis and stress response. These significant differences were then validated by qRT-PCR.
Our study is the first to provide data from whole genome gene expression profiles in different Ilex paraguariensis tissues, experimentally validating in-silico predicted genes key to the phenylpropanoid (antioxidant) pathway. Our results provide essential genomic data of potential use in breeding programs for polyphenol content. Further studies are necessary to assess if the observed expression variation in the phenylpropanoid pathway annotated genes is related to variations in leaves' polyphenol content at the population scale. These results set the current reference for Ilex paraguariensis genomic studies and provide a substantial contribution to research and biotechnologica |
doi_str_mv | 10.1186/s12864-018-5240-6 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0eab4be095004137b80b04fe820b491c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568609376</galeid><doaj_id>oai_doaj_org_article_0eab4be095004137b80b04fe820b491c</doaj_id><sourcerecordid>A568609376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-26dbf1f521dc23b62e85d303eaf7aa50df06df0aa106b18bab2040699b9f492c3</originalsourceid><addsrcrecordid>eNptklFr1TAUx4sobk4_gC8S8GUDe03SNLd9ES5D3YWB4PTBp3DSntZc2qbmtGN79JubeufcFQkhIfmd_0nO-SfJS8FXQhT6LQlZaJVyUaS5VDzVj5JjodYilUKrxw_2R8kzoh3nYl3I_GlylPFcalWI4-TnNwwWWA8TstNthzdshADtDMHhQI7esM2KXU2r9MJ1qzNWIxv8tWdTgIGq4MbJ98iACHvb3TILhDXzA5sc0YyMRqxc4yrW4uD7uOLNGJDIRWQMvnEd0vPkSQMd4Yu79ST5-uH9l_OL9PLTx-355jKt4t-mVOraNqLJpagrmVktscjrjGcIzRog53XDdZwAgmsrCgtWcsV1WdqyUaWsspNku9etPezMGFwP4dZ4cOb3gQ-tgTC5qkPDEayyyMuccyWytS245arBQnKrSrFovdtrjbPtsa5wiAXpDkQPbwb33bT-2ujYMC10FDi9Ewj-x4w0md5RhV0HA_qZjBR5LlSZ6zKir_9Bd34OQyzVQhUZV_GJf6kW4gfc0PiYt1pEzSbXheZltl7Srv5DxVFj7I4fcOnIYcDZQUBkJryZWpiJzPbq8yEr9mwVPFHA5r4egpvFr2bvVxP9aha_miXm1cNC3kf8MWj2C2kA5JE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158304413</pqid></control><display><type>article</type><title>Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Fay, Jessica V ; Watkins, Christopher J ; Shrestha, Ram K ; Litwiñiuk, Sergio L ; Talavera Stefani, Liliana N ; Rojas, Cristian A ; Argüelles, Carina F ; Ferreras, Julian A ; Caccamo, Mario ; Miretti, Marcos M</creator><creatorcontrib>Fay, Jessica V ; Watkins, Christopher J ; Shrestha, Ram K ; Litwiñiuk, Sergio L ; Talavera Stefani, Liliana N ; Rojas, Cristian A ; Argüelles, Carina F ; Ferreras, Julian A ; Caccamo, Mario ; Miretti, Marcos M</creatorcontrib><description>The most common infusion in southern Latin-American countries is prepared with dried leaves of Ilex paraguariensis A. St.-Hil., an aboriginal ancestral beverage known for its high polyphenols concentration currently consumed in > 90% of homes in Argentina, in Paraguay and Uruguay. The economy of entire provinces heavily relies on the production, collection and manufacture of Ilex paraguariensis, the fifth plant species with highest antioxidant activity. Polyphenols are associated to relevant health benefits including strong antioxidant properties. Despite its regional relevance and potential biotechnological applications, little is known about functional genomics and genetics underlying phenotypic variation of relevant traits. By generating tissue specific transcriptomic profiles, we aimed to comprehensively annotate genes in the Ilex paraguariensis phenylpropanoid pathway and to evaluate differential expression profiles.
In this study we generated a reliable transcriptome assembly based on a collection of 15 RNA-Seq libraries from different tissues of Ilex paraguariensis. A total of 554 million RNA-Seq reads were assembled into 193,897 transcripts, where 24,612 annotated full-length transcripts had complete ORF. We assessed the transcriptome assembly quality, completeness and accuracy using BUSCO and TransRate; consistency was also evaluated by experimentally validating 11 predicted genes by PCR and sequencing. Functional annotation against KEGG Pathway database identified 1395 unigenes involved in biosynthesis of secondary metabolites, 531 annotated transcripts corresponded to the phenylpropanoid pathway. The top 30 differentially expressed genes among tissue revealed genes involved in photosynthesis and stress response. These significant differences were then validated by qRT-PCR.
Our study is the first to provide data from whole genome gene expression profiles in different Ilex paraguariensis tissues, experimentally validating in-silico predicted genes key to the phenylpropanoid (antioxidant) pathway. Our results provide essential genomic data of potential use in breeding programs for polyphenol content. Further studies are necessary to assess if the observed expression variation in the phenylpropanoid pathway annotated genes is related to variations in leaves' polyphenol content at the population scale. These results set the current reference for Ilex paraguariensis genomic studies and provide a substantial contribution to research and biotechnological applications of phenylpropanoid secondary metabolites.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-018-5240-6</identifier><identifier>PMID: 30526481</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Annotations ; Antioxidants ; Assembly ; Bioinformatics ; Biosynthesis ; Biotechnology ; Breeding ; Cellular stress response ; Collection ; de-novo assembly ; Expression profile ; Functional annotation ; Gene expression ; Gene sequencing ; Genes ; Genetic aspects ; Genetic diversity ; Genetics ; Genomes ; Genomics ; Hollies ; Ilex paraguariensis ; Leaves ; Library collections ; Metabolites ; Phenotypic variations ; Phenylpropanoids ; Photosynthesis ; Plant tissues ; Polyphenols ; Ribonucleic acid ; RNA ; Secondary metabolites ; Transcriptome ; Yerba mate</subject><ispartof>BMC genomics, 2018-12, Vol.19 (1), p.891-891, Article 891</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-26dbf1f521dc23b62e85d303eaf7aa50df06df0aa106b18bab2040699b9f492c3</citedby><cites>FETCH-LOGICAL-c524t-26dbf1f521dc23b62e85d303eaf7aa50df06df0aa106b18bab2040699b9f492c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2158304413?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30526481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fay, Jessica V</creatorcontrib><creatorcontrib>Watkins, Christopher J</creatorcontrib><creatorcontrib>Shrestha, Ram K</creatorcontrib><creatorcontrib>Litwiñiuk, Sergio L</creatorcontrib><creatorcontrib>Talavera Stefani, Liliana N</creatorcontrib><creatorcontrib>Rojas, Cristian A</creatorcontrib><creatorcontrib>Argüelles, Carina F</creatorcontrib><creatorcontrib>Ferreras, Julian A</creatorcontrib><creatorcontrib>Caccamo, Mario</creatorcontrib><creatorcontrib>Miretti, Marcos M</creatorcontrib><title>Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>The most common infusion in southern Latin-American countries is prepared with dried leaves of Ilex paraguariensis A. St.-Hil., an aboriginal ancestral beverage known for its high polyphenols concentration currently consumed in > 90% of homes in Argentina, in Paraguay and Uruguay. The economy of entire provinces heavily relies on the production, collection and manufacture of Ilex paraguariensis, the fifth plant species with highest antioxidant activity. Polyphenols are associated to relevant health benefits including strong antioxidant properties. Despite its regional relevance and potential biotechnological applications, little is known about functional genomics and genetics underlying phenotypic variation of relevant traits. By generating tissue specific transcriptomic profiles, we aimed to comprehensively annotate genes in the Ilex paraguariensis phenylpropanoid pathway and to evaluate differential expression profiles.
In this study we generated a reliable transcriptome assembly based on a collection of 15 RNA-Seq libraries from different tissues of Ilex paraguariensis. A total of 554 million RNA-Seq reads were assembled into 193,897 transcripts, where 24,612 annotated full-length transcripts had complete ORF. We assessed the transcriptome assembly quality, completeness and accuracy using BUSCO and TransRate; consistency was also evaluated by experimentally validating 11 predicted genes by PCR and sequencing. Functional annotation against KEGG Pathway database identified 1395 unigenes involved in biosynthesis of secondary metabolites, 531 annotated transcripts corresponded to the phenylpropanoid pathway. The top 30 differentially expressed genes among tissue revealed genes involved in photosynthesis and stress response. These significant differences were then validated by qRT-PCR.
Our study is the first to provide data from whole genome gene expression profiles in different Ilex paraguariensis tissues, experimentally validating in-silico predicted genes key to the phenylpropanoid (antioxidant) pathway. Our results provide essential genomic data of potential use in breeding programs for polyphenol content. Further studies are necessary to assess if the observed expression variation in the phenylpropanoid pathway annotated genes is related to variations in leaves' polyphenol content at the population scale. These results set the current reference for Ilex paraguariensis genomic studies and provide a substantial contribution to research and biotechnological applications of phenylpropanoid secondary metabolites.</description><subject>Annotations</subject><subject>Antioxidants</subject><subject>Assembly</subject><subject>Bioinformatics</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Cellular stress response</subject><subject>Collection</subject><subject>de-novo assembly</subject><subject>Expression profile</subject><subject>Functional annotation</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hollies</subject><subject>Ilex paraguariensis</subject><subject>Leaves</subject><subject>Library collections</subject><subject>Metabolites</subject><subject>Phenotypic variations</subject><subject>Phenylpropanoids</subject><subject>Photosynthesis</subject><subject>Plant tissues</subject><subject>Polyphenols</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Secondary metabolites</subject><subject>Transcriptome</subject><subject>Yerba mate</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptklFr1TAUx4sobk4_gC8S8GUDe03SNLd9ES5D3YWB4PTBp3DSntZc2qbmtGN79JubeufcFQkhIfmd_0nO-SfJS8FXQhT6LQlZaJVyUaS5VDzVj5JjodYilUKrxw_2R8kzoh3nYl3I_GlylPFcalWI4-TnNwwWWA8TstNthzdshADtDMHhQI7esM2KXU2r9MJ1qzNWIxv8tWdTgIGq4MbJ98iACHvb3TILhDXzA5sc0YyMRqxc4yrW4uD7uOLNGJDIRWQMvnEd0vPkSQMd4Yu79ST5-uH9l_OL9PLTx-355jKt4t-mVOraNqLJpagrmVktscjrjGcIzRog53XDdZwAgmsrCgtWcsV1WdqyUaWsspNku9etPezMGFwP4dZ4cOb3gQ-tgTC5qkPDEayyyMuccyWytS245arBQnKrSrFovdtrjbPtsa5wiAXpDkQPbwb33bT-2ujYMC10FDi9Ewj-x4w0md5RhV0HA_qZjBR5LlSZ6zKir_9Bd34OQyzVQhUZV_GJf6kW4gfc0PiYt1pEzSbXheZltl7Srv5DxVFj7I4fcOnIYcDZQUBkJryZWpiJzPbq8yEr9mwVPFHA5r4egpvFr2bvVxP9aha_miXm1cNC3kf8MWj2C2kA5JE</recordid><startdate>20181207</startdate><enddate>20181207</enddate><creator>Fay, Jessica V</creator><creator>Watkins, Christopher J</creator><creator>Shrestha, Ram K</creator><creator>Litwiñiuk, Sergio L</creator><creator>Talavera Stefani, Liliana N</creator><creator>Rojas, Cristian A</creator><creator>Argüelles, Carina F</creator><creator>Ferreras, Julian A</creator><creator>Caccamo, Mario</creator><creator>Miretti, Marcos M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181207</creationdate><title>Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles</title><author>Fay, Jessica V ; Watkins, Christopher J ; Shrestha, Ram K ; Litwiñiuk, Sergio L ; Talavera Stefani, Liliana N ; Rojas, Cristian A ; Argüelles, Carina F ; Ferreras, Julian A ; Caccamo, Mario ; Miretti, Marcos M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-26dbf1f521dc23b62e85d303eaf7aa50df06df0aa106b18bab2040699b9f492c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annotations</topic><topic>Antioxidants</topic><topic>Assembly</topic><topic>Bioinformatics</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Cellular stress response</topic><topic>Collection</topic><topic>de-novo assembly</topic><topic>Expression profile</topic><topic>Functional annotation</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hollies</topic><topic>Ilex paraguariensis</topic><topic>Leaves</topic><topic>Library collections</topic><topic>Metabolites</topic><topic>Phenotypic variations</topic><topic>Phenylpropanoids</topic><topic>Photosynthesis</topic><topic>Plant tissues</topic><topic>Polyphenols</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Secondary metabolites</topic><topic>Transcriptome</topic><topic>Yerba mate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fay, Jessica V</creatorcontrib><creatorcontrib>Watkins, Christopher J</creatorcontrib><creatorcontrib>Shrestha, Ram K</creatorcontrib><creatorcontrib>Litwiñiuk, Sergio L</creatorcontrib><creatorcontrib>Talavera Stefani, Liliana N</creatorcontrib><creatorcontrib>Rojas, Cristian A</creatorcontrib><creatorcontrib>Argüelles, Carina F</creatorcontrib><creatorcontrib>Ferreras, Julian A</creatorcontrib><creatorcontrib>Caccamo, Mario</creatorcontrib><creatorcontrib>Miretti, Marcos M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fay, Jessica V</au><au>Watkins, Christopher J</au><au>Shrestha, Ram K</au><au>Litwiñiuk, Sergio L</au><au>Talavera Stefani, Liliana N</au><au>Rojas, Cristian A</au><au>Argüelles, Carina F</au><au>Ferreras, Julian A</au><au>Caccamo, Mario</au><au>Miretti, Marcos M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2018-12-07</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>891</spage><epage>891</epage><pages>891-891</pages><artnum>891</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>The most common infusion in southern Latin-American countries is prepared with dried leaves of Ilex paraguariensis A. St.-Hil., an aboriginal ancestral beverage known for its high polyphenols concentration currently consumed in > 90% of homes in Argentina, in Paraguay and Uruguay. The economy of entire provinces heavily relies on the production, collection and manufacture of Ilex paraguariensis, the fifth plant species with highest antioxidant activity. Polyphenols are associated to relevant health benefits including strong antioxidant properties. Despite its regional relevance and potential biotechnological applications, little is known about functional genomics and genetics underlying phenotypic variation of relevant traits. By generating tissue specific transcriptomic profiles, we aimed to comprehensively annotate genes in the Ilex paraguariensis phenylpropanoid pathway and to evaluate differential expression profiles.
In this study we generated a reliable transcriptome assembly based on a collection of 15 RNA-Seq libraries from different tissues of Ilex paraguariensis. A total of 554 million RNA-Seq reads were assembled into 193,897 transcripts, where 24,612 annotated full-length transcripts had complete ORF. We assessed the transcriptome assembly quality, completeness and accuracy using BUSCO and TransRate; consistency was also evaluated by experimentally validating 11 predicted genes by PCR and sequencing. Functional annotation against KEGG Pathway database identified 1395 unigenes involved in biosynthesis of secondary metabolites, 531 annotated transcripts corresponded to the phenylpropanoid pathway. The top 30 differentially expressed genes among tissue revealed genes involved in photosynthesis and stress response. These significant differences were then validated by qRT-PCR.
Our study is the first to provide data from whole genome gene expression profiles in different Ilex paraguariensis tissues, experimentally validating in-silico predicted genes key to the phenylpropanoid (antioxidant) pathway. Our results provide essential genomic data of potential use in breeding programs for polyphenol content. Further studies are necessary to assess if the observed expression variation in the phenylpropanoid pathway annotated genes is related to variations in leaves' polyphenol content at the population scale. These results set the current reference for Ilex paraguariensis genomic studies and provide a substantial contribution to research and biotechnological applications of phenylpropanoid secondary metabolites.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>30526481</pmid><doi>10.1186/s12864-018-5240-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2018-12, Vol.19 (1), p.891-891, Article 891 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0eab4be095004137b80b04fe820b491c |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Annotations Antioxidants Assembly Bioinformatics Biosynthesis Biotechnology Breeding Cellular stress response Collection de-novo assembly Expression profile Functional annotation Gene expression Gene sequencing Genes Genetic aspects Genetic diversity Genetics Genomes Genomics Hollies Ilex paraguariensis Leaves Library collections Metabolites Phenotypic variations Phenylpropanoids Photosynthesis Plant tissues Polyphenols Ribonucleic acid RNA Secondary metabolites Transcriptome Yerba mate |
title | Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yerba%20mate%20(Ilex%20paraguariensis,%20A.%20St.-Hil.)%20de%20novo%20transcriptome%20assembly%20based%20on%20tissue%20specific%20genomic%20expression%20profiles&rft.jtitle=BMC%20genomics&rft.au=Fay,%20Jessica%20V&rft.date=2018-12-07&rft.volume=19&rft.issue=1&rft.spage=891&rft.epage=891&rft.pages=891-891&rft.artnum=891&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-018-5240-6&rft_dat=%3Cgale_doaj_%3EA568609376%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-26dbf1f521dc23b62e85d303eaf7aa50df06df0aa106b18bab2040699b9f492c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158304413&rft_id=info:pmid/30526481&rft_galeid=A568609376&rfr_iscdi=true |