Loading…
Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds
Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, me...
Saved in:
Published in: | PloS one 2024-02, Vol.19 (2), p.e0299579-e0299579 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873 |
container_end_page | e0299579 |
container_issue | 2 |
container_start_page | e0299579 |
container_title | PloS one |
container_volume | 19 |
creator | Das, Ritopa Le, Duong Kan, Ho-Man Le, Thinh T Park, Jinyoung Nguyen, Thanh D Lo, Kevin W-H |
description | Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage. |
doi_str_mv | 10.1371/journal.pone.0299579 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0eb1cbcabd5f4ca385b163c33e2930c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784238046</galeid><doaj_id>oai_doaj_org_article_0eb1cbcabd5f4ca385b163c33e2930c6</doaj_id><sourcerecordid>A784238046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873</originalsourceid><addsrcrecordid>eNptkltrFDEYhgdRbK3-A5EBb-rFrMkkk8OVlKK1UOiN3ngTcviyzZKZrMlMof56s-62dEESyOl7n7whb9O8x2iFCcefN2nJk46rbZpghXopBy5fNKdYkr5jPSIvn81PmjelbBAaiGDsdXNCBMU9ZuK0-XVbZkhdmNxi53APLXgPdm6Tb7cB_iSIdZWDbcscxiXqOaSp9TmN7XwH7TbFh_PYRV21ttU2uE9tsdr7FF1527zyOhZ4dxjPmp_fvv64_N7d3F5dX17cdJZKPHeOOu51dSO5kcxwTDnFGvnBSKQ1FowaRHpHLBkwYxYYGrTDvO-RZc4ITs6a6z3XJb1R2xxGnR9U0kH920h5rXSu_iIoBAZbY7Vxg6dWEzEYzCqZQC9J5VXWlz1ru5gRnIVpzjoeQY9PpnCn1uleYSSk4BxXwvmBkNPvBcqsxlAsxKgnSEtR9aLaq_2hln7cl6519RYmnyrS7srVBRe0JwLRnaXVf6pqczAGWz_fh7p_JKB7gc2plAz-yT5GahcddYiO2kVHHaJTZR-eP_1J9JgV8he-DsM8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932937225</pqid></control><display><type>article</type><title>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Das, Ritopa ; Le, Duong ; Kan, Ho-Man ; Le, Thinh T ; Park, Jinyoung ; Nguyen, Thanh D ; Lo, Kevin W-H</creator><contributor>Viegas, Carlos Alberto Antunes</contributor><creatorcontrib>Das, Ritopa ; Le, Duong ; Kan, Ho-Man ; Le, Thinh T ; Park, Jinyoung ; Nguyen, Thanh D ; Lo, Kevin W-H ; Viegas, Carlos Alberto Antunes</creatorcontrib><description>Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0299579</identifier><identifier>PMID: 38412168</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biological products ; Biology and Life Sciences ; Bone regeneration ; Cell differentiation ; Ethylenediaminetetraacetic acid ; Evaluation ; Lactic acid ; Medicine and Health Sciences ; Methods ; Properties ; Research and Analysis Methods ; Stem cells</subject><ispartof>PloS one, 2024-02, Vol.19 (2), p.e0299579-e0299579</ispartof><rights>Copyright: © 2024 Das et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Das et al 2024 Das et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873</cites><orcidid>0000-0002-8529-5447 ; 0000-0003-0943-3649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898771/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898771/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38412168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Viegas, Carlos Alberto Antunes</contributor><creatorcontrib>Das, Ritopa</creatorcontrib><creatorcontrib>Le, Duong</creatorcontrib><creatorcontrib>Kan, Ho-Man</creatorcontrib><creatorcontrib>Le, Thinh T</creatorcontrib><creatorcontrib>Park, Jinyoung</creatorcontrib><creatorcontrib>Nguyen, Thanh D</creatorcontrib><creatorcontrib>Lo, Kevin W-H</creatorcontrib><title>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.</description><subject>Analysis</subject><subject>Biological products</subject><subject>Biology and Life Sciences</subject><subject>Bone regeneration</subject><subject>Cell differentiation</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Evaluation</subject><subject>Lactic acid</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Properties</subject><subject>Research and Analysis Methods</subject><subject>Stem cells</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkltrFDEYhgdRbK3-A5EBb-rFrMkkk8OVlKK1UOiN3ngTcviyzZKZrMlMof56s-62dEESyOl7n7whb9O8x2iFCcefN2nJk46rbZpghXopBy5fNKdYkr5jPSIvn81PmjelbBAaiGDsdXNCBMU9ZuK0-XVbZkhdmNxi53APLXgPdm6Tb7cB_iSIdZWDbcscxiXqOaSp9TmN7XwH7TbFh_PYRV21ttU2uE9tsdr7FF1527zyOhZ4dxjPmp_fvv64_N7d3F5dX17cdJZKPHeOOu51dSO5kcxwTDnFGvnBSKQ1FowaRHpHLBkwYxYYGrTDvO-RZc4ITs6a6z3XJb1R2xxGnR9U0kH920h5rXSu_iIoBAZbY7Vxg6dWEzEYzCqZQC9J5VXWlz1ru5gRnIVpzjoeQY9PpnCn1uleYSSk4BxXwvmBkNPvBcqsxlAsxKgnSEtR9aLaq_2hln7cl6519RYmnyrS7srVBRe0JwLRnaXVf6pqczAGWz_fh7p_JKB7gc2plAz-yT5GahcddYiO2kVHHaJTZR-eP_1J9JgV8he-DsM8</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Das, Ritopa</creator><creator>Le, Duong</creator><creator>Kan, Ho-Man</creator><creator>Le, Thinh T</creator><creator>Park, Jinyoung</creator><creator>Nguyen, Thanh D</creator><creator>Lo, Kevin W-H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8529-5447</orcidid><orcidid>https://orcid.org/0000-0003-0943-3649</orcidid></search><sort><creationdate>20240227</creationdate><title>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</title><author>Das, Ritopa ; Le, Duong ; Kan, Ho-Man ; Le, Thinh T ; Park, Jinyoung ; Nguyen, Thanh D ; Lo, Kevin W-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Biological products</topic><topic>Biology and Life Sciences</topic><topic>Bone regeneration</topic><topic>Cell differentiation</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Evaluation</topic><topic>Lactic acid</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Properties</topic><topic>Research and Analysis Methods</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Ritopa</creatorcontrib><creatorcontrib>Le, Duong</creatorcontrib><creatorcontrib>Kan, Ho-Man</creatorcontrib><creatorcontrib>Le, Thinh T</creatorcontrib><creatorcontrib>Park, Jinyoung</creatorcontrib><creatorcontrib>Nguyen, Thanh D</creatorcontrib><creatorcontrib>Lo, Kevin W-H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Ritopa</au><au>Le, Duong</au><au>Kan, Ho-Man</au><au>Le, Thinh T</au><au>Park, Jinyoung</au><au>Nguyen, Thanh D</au><au>Lo, Kevin W-H</au><au>Viegas, Carlos Alberto Antunes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>e0299579</spage><epage>e0299579</epage><pages>e0299579-e0299579</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38412168</pmid><doi>10.1371/journal.pone.0299579</doi><orcidid>https://orcid.org/0000-0002-8529-5447</orcidid><orcidid>https://orcid.org/0000-0003-0943-3649</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-02, Vol.19 (2), p.e0299579-e0299579 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0eb1cbcabd5f4ca385b163c33e2930c6 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Biological products Biology and Life Sciences Bone regeneration Cell differentiation Ethylenediaminetetraacetic acid Evaluation Lactic acid Medicine and Health Sciences Methods Properties Research and Analysis Methods Stem cells |
title | Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteo-inductive%20effect%20of%20piezoelectric%20stimulation%20from%20the%20poly(l-lactic%20acid)%20scaffolds&rft.jtitle=PloS%20one&rft.au=Das,%20Ritopa&rft.date=2024-02-27&rft.volume=19&rft.issue=2&rft.spage=e0299579&rft.epage=e0299579&rft.pages=e0299579-e0299579&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0299579&rft_dat=%3Cgale_doaj_%3EA784238046%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932937225&rft_id=info:pmid/38412168&rft_galeid=A784238046&rfr_iscdi=true |