Loading…

Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds

Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, me...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-02, Vol.19 (2), p.e0299579-e0299579
Main Authors: Das, Ritopa, Le, Duong, Kan, Ho-Man, Le, Thinh T, Park, Jinyoung, Nguyen, Thanh D, Lo, Kevin W-H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873
container_end_page e0299579
container_issue 2
container_start_page e0299579
container_title PloS one
container_volume 19
creator Das, Ritopa
Le, Duong
Kan, Ho-Man
Le, Thinh T
Park, Jinyoung
Nguyen, Thanh D
Lo, Kevin W-H
description Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.
doi_str_mv 10.1371/journal.pone.0299579
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0eb1cbcabd5f4ca385b163c33e2930c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784238046</galeid><doaj_id>oai_doaj_org_article_0eb1cbcabd5f4ca385b163c33e2930c6</doaj_id><sourcerecordid>A784238046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873</originalsourceid><addsrcrecordid>eNptkltrFDEYhgdRbK3-A5EBb-rFrMkkk8OVlKK1UOiN3ngTcviyzZKZrMlMof56s-62dEESyOl7n7whb9O8x2iFCcefN2nJk46rbZpghXopBy5fNKdYkr5jPSIvn81PmjelbBAaiGDsdXNCBMU9ZuK0-XVbZkhdmNxi53APLXgPdm6Tb7cB_iSIdZWDbcscxiXqOaSp9TmN7XwH7TbFh_PYRV21ttU2uE9tsdr7FF1527zyOhZ4dxjPmp_fvv64_N7d3F5dX17cdJZKPHeOOu51dSO5kcxwTDnFGvnBSKQ1FowaRHpHLBkwYxYYGrTDvO-RZc4ITs6a6z3XJb1R2xxGnR9U0kH920h5rXSu_iIoBAZbY7Vxg6dWEzEYzCqZQC9J5VXWlz1ru5gRnIVpzjoeQY9PpnCn1uleYSSk4BxXwvmBkNPvBcqsxlAsxKgnSEtR9aLaq_2hln7cl6519RYmnyrS7srVBRe0JwLRnaXVf6pqczAGWz_fh7p_JKB7gc2plAz-yT5GahcddYiO2kVHHaJTZR-eP_1J9JgV8he-DsM8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932937225</pqid></control><display><type>article</type><title>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Das, Ritopa ; Le, Duong ; Kan, Ho-Man ; Le, Thinh T ; Park, Jinyoung ; Nguyen, Thanh D ; Lo, Kevin W-H</creator><contributor>Viegas, Carlos Alberto Antunes</contributor><creatorcontrib>Das, Ritopa ; Le, Duong ; Kan, Ho-Man ; Le, Thinh T ; Park, Jinyoung ; Nguyen, Thanh D ; Lo, Kevin W-H ; Viegas, Carlos Alberto Antunes</creatorcontrib><description>Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0299579</identifier><identifier>PMID: 38412168</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biological products ; Biology and Life Sciences ; Bone regeneration ; Cell differentiation ; Ethylenediaminetetraacetic acid ; Evaluation ; Lactic acid ; Medicine and Health Sciences ; Methods ; Properties ; Research and Analysis Methods ; Stem cells</subject><ispartof>PloS one, 2024-02, Vol.19 (2), p.e0299579-e0299579</ispartof><rights>Copyright: © 2024 Das et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Das et al 2024 Das et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873</cites><orcidid>0000-0002-8529-5447 ; 0000-0003-0943-3649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898771/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898771/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38412168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Viegas, Carlos Alberto Antunes</contributor><creatorcontrib>Das, Ritopa</creatorcontrib><creatorcontrib>Le, Duong</creatorcontrib><creatorcontrib>Kan, Ho-Man</creatorcontrib><creatorcontrib>Le, Thinh T</creatorcontrib><creatorcontrib>Park, Jinyoung</creatorcontrib><creatorcontrib>Nguyen, Thanh D</creatorcontrib><creatorcontrib>Lo, Kevin W-H</creatorcontrib><title>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.</description><subject>Analysis</subject><subject>Biological products</subject><subject>Biology and Life Sciences</subject><subject>Bone regeneration</subject><subject>Cell differentiation</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Evaluation</subject><subject>Lactic acid</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Properties</subject><subject>Research and Analysis Methods</subject><subject>Stem cells</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkltrFDEYhgdRbK3-A5EBb-rFrMkkk8OVlKK1UOiN3ngTcviyzZKZrMlMof56s-62dEESyOl7n7whb9O8x2iFCcefN2nJk46rbZpghXopBy5fNKdYkr5jPSIvn81PmjelbBAaiGDsdXNCBMU9ZuK0-XVbZkhdmNxi53APLXgPdm6Tb7cB_iSIdZWDbcscxiXqOaSp9TmN7XwH7TbFh_PYRV21ttU2uE9tsdr7FF1527zyOhZ4dxjPmp_fvv64_N7d3F5dX17cdJZKPHeOOu51dSO5kcxwTDnFGvnBSKQ1FowaRHpHLBkwYxYYGrTDvO-RZc4ITs6a6z3XJb1R2xxGnR9U0kH920h5rXSu_iIoBAZbY7Vxg6dWEzEYzCqZQC9J5VXWlz1ru5gRnIVpzjoeQY9PpnCn1uleYSSk4BxXwvmBkNPvBcqsxlAsxKgnSEtR9aLaq_2hln7cl6519RYmnyrS7srVBRe0JwLRnaXVf6pqczAGWz_fh7p_JKB7gc2plAz-yT5GahcddYiO2kVHHaJTZR-eP_1J9JgV8he-DsM8</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Das, Ritopa</creator><creator>Le, Duong</creator><creator>Kan, Ho-Man</creator><creator>Le, Thinh T</creator><creator>Park, Jinyoung</creator><creator>Nguyen, Thanh D</creator><creator>Lo, Kevin W-H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8529-5447</orcidid><orcidid>https://orcid.org/0000-0003-0943-3649</orcidid></search><sort><creationdate>20240227</creationdate><title>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</title><author>Das, Ritopa ; Le, Duong ; Kan, Ho-Man ; Le, Thinh T ; Park, Jinyoung ; Nguyen, Thanh D ; Lo, Kevin W-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Biological products</topic><topic>Biology and Life Sciences</topic><topic>Bone regeneration</topic><topic>Cell differentiation</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Evaluation</topic><topic>Lactic acid</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Properties</topic><topic>Research and Analysis Methods</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Ritopa</creatorcontrib><creatorcontrib>Le, Duong</creatorcontrib><creatorcontrib>Kan, Ho-Man</creatorcontrib><creatorcontrib>Le, Thinh T</creatorcontrib><creatorcontrib>Park, Jinyoung</creatorcontrib><creatorcontrib>Nguyen, Thanh D</creatorcontrib><creatorcontrib>Lo, Kevin W-H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Ritopa</au><au>Le, Duong</au><au>Kan, Ho-Man</au><au>Le, Thinh T</au><au>Park, Jinyoung</au><au>Nguyen, Thanh D</au><au>Lo, Kevin W-H</au><au>Viegas, Carlos Alberto Antunes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>e0299579</spage><epage>e0299579</epage><pages>e0299579-e0299579</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38412168</pmid><doi>10.1371/journal.pone.0299579</doi><orcidid>https://orcid.org/0000-0002-8529-5447</orcidid><orcidid>https://orcid.org/0000-0003-0943-3649</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-02, Vol.19 (2), p.e0299579-e0299579
issn 1932-6203
1932-6203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0eb1cbcabd5f4ca385b163c33e2930c6
source Publicly Available Content Database; PubMed Central
subjects Analysis
Biological products
Biology and Life Sciences
Bone regeneration
Cell differentiation
Ethylenediaminetetraacetic acid
Evaluation
Lactic acid
Medicine and Health Sciences
Methods
Properties
Research and Analysis Methods
Stem cells
title Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteo-inductive%20effect%20of%20piezoelectric%20stimulation%20from%20the%20poly(l-lactic%20acid)%20scaffolds&rft.jtitle=PloS%20one&rft.au=Das,%20Ritopa&rft.date=2024-02-27&rft.volume=19&rft.issue=2&rft.spage=e0299579&rft.epage=e0299579&rft.pages=e0299579-e0299579&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0299579&rft_dat=%3Cgale_doaj_%3EA784238046%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-d4d7fa21697b96b714741a0f5b90aa1864b032d3c35166ce605ad17220c6db873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932937225&rft_id=info:pmid/38412168&rft_galeid=A784238046&rfr_iscdi=true