Loading…

Artificial intelligence in neuroimaging: Opportunities and ethical challenges

The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leadin...

Full description

Saved in:
Bibliographic Details
Published in:Brain & spine 2024, Vol.4, p.102919, Article 102919
Main Authors: Brahma, Neha, Vimal, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03
container_end_page
container_issue
container_start_page 102919
container_title Brain & spine
container_volume 4
creator Brahma, Neha
Vimal, S.
description The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases.
doi_str_mv 10.1016/j.bas.2024.102919
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0ed6e3e2cc4c4047b4d24153619d8c86</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772529424001759</els_id><doaj_id>oai_doaj_org_article_0ed6e3e2cc4c4047b4d24153619d8c86</doaj_id><sourcerecordid>3106037715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRAVrZb-AC4oRy67jD_ixHCqKj4qFfXSni1nPE69yiaLnSDx7_E2peLEwfI8673nmXmMveOw48D1x_2uc3knQKiCheHmFbsQTSO2tTDq9T_1ObvMeQ8AouUA2rxh59KUulXmgv24SnMMEaMbqjjONAyxpxGpgGqkJU3x4Po49p-qu-NxSvMyxjlSrtzoK5ofIxYdPrphoLGn_JadBTdkuny-N-zh65f76-_b27tvN9dXt1sUtTFboUytG-S6CS3XgVRphXMIIB0GXw6YIGrZoOjajkSAWnjZtoR1AUQgN-xm9fWT29tjKk2m33Zy0T49TKm3rsyFA1kgr0mSQFSoQDWd8kLxWmpufIutLl4fVq9jmn4ulGd7iBnLItxI05Kt5KBBNk3RbBhfqZimnBOFl6852FModm9LKPYUil1DKZr3z_ZLdyD_ovgbQSF8XglUFvYrUrIZ4ykCHxPhXCaK_7H_A1JKm98</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106037715</pqid></control><display><type>article</type><title>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</title><source>Open Access: PubMed Central</source><creator>Brahma, Neha ; Vimal, S.</creator><creatorcontrib>Brahma, Neha ; Vimal, S.</creatorcontrib><description>The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases.</description><identifier>ISSN: 2772-5294</identifier><identifier>EISSN: 2772-5294</identifier><identifier>DOI: 10.1016/j.bas.2024.102919</identifier><identifier>PMID: 39281849</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithmic bias ; Artificial intelligence ; Data privacy ; Ethical challenges ; Neurodegenerative diseases ; Neuroimaging</subject><ispartof>Brain &amp; spine, 2024, Vol.4, p.102919, Article 102919</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39281849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahma, Neha</creatorcontrib><creatorcontrib>Vimal, S.</creatorcontrib><title>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</title><title>Brain &amp; spine</title><addtitle>Brain Spine</addtitle><description>The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases.</description><subject>Algorithmic bias</subject><subject>Artificial intelligence</subject><subject>Data privacy</subject><subject>Ethical challenges</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><issn>2772-5294</issn><issn>2772-5294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1v1DAQtRAVrZb-AC4oRy67jD_ixHCqKj4qFfXSni1nPE69yiaLnSDx7_E2peLEwfI8673nmXmMveOw48D1x_2uc3knQKiCheHmFbsQTSO2tTDq9T_1ObvMeQ8AouUA2rxh59KUulXmgv24SnMMEaMbqjjONAyxpxGpgGqkJU3x4Po49p-qu-NxSvMyxjlSrtzoK5ofIxYdPrphoLGn_JadBTdkuny-N-zh65f76-_b27tvN9dXt1sUtTFboUytG-S6CS3XgVRphXMIIB0GXw6YIGrZoOjajkSAWnjZtoR1AUQgN-xm9fWT29tjKk2m33Zy0T49TKm3rsyFA1kgr0mSQFSoQDWd8kLxWmpufIutLl4fVq9jmn4ulGd7iBnLItxI05Kt5KBBNk3RbBhfqZimnBOFl6852FModm9LKPYUil1DKZr3z_ZLdyD_ovgbQSF8XglUFvYrUrIZ4ykCHxPhXCaK_7H_A1JKm98</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Brahma, Neha</creator><creator>Vimal, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</title><author>Brahma, Neha ; Vimal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithmic bias</topic><topic>Artificial intelligence</topic><topic>Data privacy</topic><topic>Ethical challenges</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahma, Neha</creatorcontrib><creatorcontrib>Vimal, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Brain &amp; spine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahma, Neha</au><au>Vimal, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</atitle><jtitle>Brain &amp; spine</jtitle><addtitle>Brain Spine</addtitle><date>2024</date><risdate>2024</risdate><volume>4</volume><spage>102919</spage><pages>102919-</pages><artnum>102919</artnum><issn>2772-5294</issn><eissn>2772-5294</eissn><abstract>The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39281849</pmid><doi>10.1016/j.bas.2024.102919</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2772-5294
ispartof Brain & spine, 2024, Vol.4, p.102919, Article 102919
issn 2772-5294
2772-5294
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0ed6e3e2cc4c4047b4d24153619d8c86
source Open Access: PubMed Central
subjects Algorithmic bias
Artificial intelligence
Data privacy
Ethical challenges
Neurodegenerative diseases
Neuroimaging
title Artificial intelligence in neuroimaging: Opportunities and ethical challenges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20in%20neuroimaging:%20Opportunities%20and%20ethical%20challenges&rft.jtitle=Brain%20&%20spine&rft.au=Brahma,%20Neha&rft.date=2024&rft.volume=4&rft.spage=102919&rft.pages=102919-&rft.artnum=102919&rft.issn=2772-5294&rft.eissn=2772-5294&rft_id=info:doi/10.1016/j.bas.2024.102919&rft_dat=%3Cproquest_doaj_%3E3106037715%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106037715&rft_id=info:pmid/39281849&rfr_iscdi=true