Loading…
Artificial intelligence in neuroimaging: Opportunities and ethical challenges
The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leadin...
Saved in:
Published in: | Brain & spine 2024, Vol.4, p.102919, Article 102919 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03 |
container_end_page | |
container_issue | |
container_start_page | 102919 |
container_title | Brain & spine |
container_volume | 4 |
creator | Brahma, Neha Vimal, S. |
description | The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases. |
doi_str_mv | 10.1016/j.bas.2024.102919 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0ed6e3e2cc4c4047b4d24153619d8c86</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772529424001759</els_id><doaj_id>oai_doaj_org_article_0ed6e3e2cc4c4047b4d24153619d8c86</doaj_id><sourcerecordid>3106037715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRAVrZb-AC4oRy67jD_ixHCqKj4qFfXSni1nPE69yiaLnSDx7_E2peLEwfI8673nmXmMveOw48D1x_2uc3knQKiCheHmFbsQTSO2tTDq9T_1ObvMeQ8AouUA2rxh59KUulXmgv24SnMMEaMbqjjONAyxpxGpgGqkJU3x4Po49p-qu-NxSvMyxjlSrtzoK5ofIxYdPrphoLGn_JadBTdkuny-N-zh65f76-_b27tvN9dXt1sUtTFboUytG-S6CS3XgVRphXMIIB0GXw6YIGrZoOjajkSAWnjZtoR1AUQgN-xm9fWT29tjKk2m33Zy0T49TKm3rsyFA1kgr0mSQFSoQDWd8kLxWmpufIutLl4fVq9jmn4ulGd7iBnLItxI05Kt5KBBNk3RbBhfqZimnBOFl6852FModm9LKPYUil1DKZr3z_ZLdyD_ovgbQSF8XglUFvYrUrIZ4ykCHxPhXCaK_7H_A1JKm98</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106037715</pqid></control><display><type>article</type><title>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</title><source>Open Access: PubMed Central</source><creator>Brahma, Neha ; Vimal, S.</creator><creatorcontrib>Brahma, Neha ; Vimal, S.</creatorcontrib><description>The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases.</description><identifier>ISSN: 2772-5294</identifier><identifier>EISSN: 2772-5294</identifier><identifier>DOI: 10.1016/j.bas.2024.102919</identifier><identifier>PMID: 39281849</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithmic bias ; Artificial intelligence ; Data privacy ; Ethical challenges ; Neurodegenerative diseases ; Neuroimaging</subject><ispartof>Brain & spine, 2024, Vol.4, p.102919, Article 102919</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39281849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahma, Neha</creatorcontrib><creatorcontrib>Vimal, S.</creatorcontrib><title>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</title><title>Brain & spine</title><addtitle>Brain Spine</addtitle><description>The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases.</description><subject>Algorithmic bias</subject><subject>Artificial intelligence</subject><subject>Data privacy</subject><subject>Ethical challenges</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><issn>2772-5294</issn><issn>2772-5294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1v1DAQtRAVrZb-AC4oRy67jD_ixHCqKj4qFfXSni1nPE69yiaLnSDx7_E2peLEwfI8673nmXmMveOw48D1x_2uc3knQKiCheHmFbsQTSO2tTDq9T_1ObvMeQ8AouUA2rxh59KUulXmgv24SnMMEaMbqjjONAyxpxGpgGqkJU3x4Po49p-qu-NxSvMyxjlSrtzoK5ofIxYdPrphoLGn_JadBTdkuny-N-zh65f76-_b27tvN9dXt1sUtTFboUytG-S6CS3XgVRphXMIIB0GXw6YIGrZoOjajkSAWnjZtoR1AUQgN-xm9fWT29tjKk2m33Zy0T49TKm3rsyFA1kgr0mSQFSoQDWd8kLxWmpufIutLl4fVq9jmn4ulGd7iBnLItxI05Kt5KBBNk3RbBhfqZimnBOFl6852FModm9LKPYUil1DKZr3z_ZLdyD_ovgbQSF8XglUFvYrUrIZ4ykCHxPhXCaK_7H_A1JKm98</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Brahma, Neha</creator><creator>Vimal, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</title><author>Brahma, Neha ; Vimal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithmic bias</topic><topic>Artificial intelligence</topic><topic>Data privacy</topic><topic>Ethical challenges</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahma, Neha</creatorcontrib><creatorcontrib>Vimal, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Brain & spine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahma, Neha</au><au>Vimal, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence in neuroimaging: Opportunities and ethical challenges</atitle><jtitle>Brain & spine</jtitle><addtitle>Brain Spine</addtitle><date>2024</date><risdate>2024</risdate><volume>4</volume><spage>102919</spage><pages>102919-</pages><artnum>102919</artnum><issn>2772-5294</issn><eissn>2772-5294</eissn><abstract>The integration of artificial intelligence (AI) into neuroimaging represents a transformative shift in the diagnosis and treatment of neurodegenerative diseases. AI algorithms, particularly deep learning models, have demonstrated remarkable capabilities in analyzing complex neuroimaging data, leading to enhanced diagnostic accuracy and personalized treatment strategies. This letter discusses the opportunities AI presents in neuroimaging, including improved disease detection, predictive modeling, and treatment planning. However, the rapid adoption of AI technologies also raises significant ethical challenges. Issues such as algorithmic bias, data privacy, and the interpretability of AI-driven insights must be addressed to ensure that these technologies are used responsibly and equitably. As neuroimaging continues to evolve, a collaborative approach involving researchers, clinicians, and ethicists is essential to navigate these challenges and maximize the benefits of AI in improving patient outcomes in neurodegenerative diseases.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39281849</pmid><doi>10.1016/j.bas.2024.102919</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2772-5294 |
ispartof | Brain & spine, 2024, Vol.4, p.102919, Article 102919 |
issn | 2772-5294 2772-5294 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0ed6e3e2cc4c4047b4d24153619d8c86 |
source | Open Access: PubMed Central |
subjects | Algorithmic bias Artificial intelligence Data privacy Ethical challenges Neurodegenerative diseases Neuroimaging |
title | Artificial intelligence in neuroimaging: Opportunities and ethical challenges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20in%20neuroimaging:%20Opportunities%20and%20ethical%20challenges&rft.jtitle=Brain%20&%20spine&rft.au=Brahma,%20Neha&rft.date=2024&rft.volume=4&rft.spage=102919&rft.pages=102919-&rft.artnum=102919&rft.issn=2772-5294&rft.eissn=2772-5294&rft_id=info:doi/10.1016/j.bas.2024.102919&rft_dat=%3Cproquest_doaj_%3E3106037715%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2599-249567c167f816fe4849110f03acfdacf09f2537c2b8be2f052d388ec5e2fee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106037715&rft_id=info:pmid/39281849&rfr_iscdi=true |