Loading…
Analysis of Volcanic Thermohaline Fluctuations of Tagoro Submarine Volcano (El Hierro Island, Canary Islands, Spain)
Temperature and conductivity fluctuations caused by the hydrothermal emissions released during the degasification stage of the Tagoro submarine volcano (Canary Islands, Spain) have been analysed as a robust proxy for characterising and forecasting the activity of the system. A total of 21 conductivi...
Saved in:
Published in: | Geosciences (Basel) 2021-09, Vol.11 (9), p.374 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Temperature and conductivity fluctuations caused by the hydrothermal emissions released during the degasification stage of the Tagoro submarine volcano (Canary Islands, Spain) have been analysed as a robust proxy for characterising and forecasting the activity of the system. A total of 21 conductivity-temperature-depth time series were gathered on a regular high-resolution grid over the main crater of Tagoro volcano. Temperature and conductivity time series, as manifestations of stochastic events, were investigated in terms of variance and analysed by the Generalised Moments Method (GMM). GMM provides the statistical moments, the structure functions of a process whose shape is an indicator of the underlying stochastic mechanisms and the state of activity of the submarine volcano. Our findings confirm an active hydrothermal process in the submarine volcano with a sub-normal behaviour resulting from anti-persistent fluctuations in time. Its hydrothermal emissions are classified as multifractal processes whose structure functions present a crossover between two time scales. In the shorter time scale, findings point to the multiplicative action of two random processes, hydrothermal vents, which carries those fluctuations driving the circulation over the crater, and the overlying aquatic environment. Given that both temperature and conductivity fluctuations are nonstationary, Tagoro submarine volcano can be characterised as an open system exchanging energy to its surroundings. |
---|---|
ISSN: | 2076-3263 2076-3263 |
DOI: | 10.3390/geosciences11090374 |