Loading…

Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions

The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT fra...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-11, Vol.21 (22), p.7518
Main Authors: Latif, Shahid, Driss, Maha, Boulila, Wadii, Huma, Zil E, Jamal, Sajjad Shaukat, Idrees, Zeba, Ahmad, Jawad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53
cites cdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53
container_end_page
container_issue 22
container_start_page 7518
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Latif, Shahid
Driss, Maha
Boulila, Wadii
Huma, Zil E
Jamal, Sajjad Shaukat
Idrees, Zeba
Ahmad, Jawad
description The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.
doi_str_mv 10.3390/s21227518
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0eeb42d00b80478b88fa1683d93aa495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0eeb42d00b80478b88fa1683d93aa495</doaj_id><sourcerecordid>2602181378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</originalsourceid><addsrcrecordid>eNpdkt9u0zAUxiMEYmNwwQsgS9xsEgX_S-JwgVR1FCJVAolyHTnOSeuS2JntFO2V9pRz2lFtXPnoOz99PufoS5K3BH9krMCfPCWU5ikRz5JzwimfCUrx80f1WfLK-x3GlDEmXiZnjAvG0oKfJ3fXAANagXRGmw1qrUNhC6g0zeiD07KLZQBnICDbovU2Qh5dlqVdX31Gc7Sw_eBgC8brPaBfo9vD7QEEtTX6ZgT_AZX90EEPJsigrUFLJ3v4a92f2PppQ9SnX-bD0Gl1IKIuTYOWYxgdoGvtQB3k18mLVnYe3jy8F8nv5df14vts9eNbuZivZopnRZhBWtR1RmvSpKwArkQrUkqlYhkWSqlaAsmZIIoAzTAnOeVKAZG5AMXyuk3ZRVIefRsrd9XgdC_dbWWlrg6CdZtKuqBVBxUGqDltMK4F5rmohWglyQRrCiYlLyavL0evYax7aFTc1snuienTjtHbamP3lchoikURDS4fDJydzhmqXnsFXScN2NFX0w4YC1JkEX3_H7qzozPxVBNFiSAsF5G6OlLKWe8dtKdhCK6mNFWnNEX23ePpT-S_-LB7NX3G5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602181378</pqid></control><display><type>article</type><title>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Latif, Shahid ; Driss, Maha ; Boulila, Wadii ; Huma, Zil E ; Jamal, Sajjad Shaukat ; Idrees, Zeba ; Ahmad, Jawad</creator><creatorcontrib>Latif, Shahid ; Driss, Maha ; Boulila, Wadii ; Huma, Zil E ; Jamal, Sajjad Shaukat ; Idrees, Zeba ; Ahmad, Jawad</creatorcontrib><description>The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21227518</identifier><identifier>PMID: 34833594</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actuators ; Algorithms ; Artificial Intelligence ; Big Data ; Communication ; Comparative analysis ; Computer Security ; Data analysis ; Deep Learning ; Industrial applications ; Industrial Internet of Things ; Industry ; Internet of Things ; Manufacturing ; Review ; Sensors ; smart industry ; Smart sensors ; Software</subject><ispartof>Sensors (Basel, Switzerland), 2021-11, Vol.21 (22), p.7518</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</citedby><cites>FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</cites><orcidid>0000-0001-8236-8746 ; 0000-0002-7918-0440 ; 0000-0002-6368-2729 ; 0000-0001-6289-8248 ; 0000-0003-0500-1566 ; 0000-0002-5852-1955 ; 0000-0003-2133-0757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602181378/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602181378?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34833594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Latif, Shahid</creatorcontrib><creatorcontrib>Driss, Maha</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><creatorcontrib>Huma, Zil E</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><creatorcontrib>Idrees, Zeba</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><title>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Communication</subject><subject>Comparative analysis</subject><subject>Computer Security</subject><subject>Data analysis</subject><subject>Deep Learning</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Industry</subject><subject>Internet of Things</subject><subject>Manufacturing</subject><subject>Review</subject><subject>Sensors</subject><subject>smart industry</subject><subject>Smart sensors</subject><subject>Software</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9u0zAUxiMEYmNwwQsgS9xsEgX_S-JwgVR1FCJVAolyHTnOSeuS2JntFO2V9pRz2lFtXPnoOz99PufoS5K3BH9krMCfPCWU5ikRz5JzwimfCUrx80f1WfLK-x3GlDEmXiZnjAvG0oKfJ3fXAANagXRGmw1qrUNhC6g0zeiD07KLZQBnICDbovU2Qh5dlqVdX31Gc7Sw_eBgC8brPaBfo9vD7QEEtTX6ZgT_AZX90EEPJsigrUFLJ3v4a92f2PppQ9SnX-bD0Gl1IKIuTYOWYxgdoGvtQB3k18mLVnYe3jy8F8nv5df14vts9eNbuZivZopnRZhBWtR1RmvSpKwArkQrUkqlYhkWSqlaAsmZIIoAzTAnOeVKAZG5AMXyuk3ZRVIefRsrd9XgdC_dbWWlrg6CdZtKuqBVBxUGqDltMK4F5rmohWglyQRrCiYlLyavL0evYax7aFTc1snuienTjtHbamP3lchoikURDS4fDJydzhmqXnsFXScN2NFX0w4YC1JkEX3_H7qzozPxVBNFiSAsF5G6OlLKWe8dtKdhCK6mNFWnNEX23ePpT-S_-LB7NX3G5w</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Latif, Shahid</creator><creator>Driss, Maha</creator><creator>Boulila, Wadii</creator><creator>Huma, Zil E</creator><creator>Jamal, Sajjad Shaukat</creator><creator>Idrees, Zeba</creator><creator>Ahmad, Jawad</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8236-8746</orcidid><orcidid>https://orcid.org/0000-0002-7918-0440</orcidid><orcidid>https://orcid.org/0000-0002-6368-2729</orcidid><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-0500-1566</orcidid><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid></search><sort><creationdate>20211112</creationdate><title>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</title><author>Latif, Shahid ; Driss, Maha ; Boulila, Wadii ; Huma, Zil E ; Jamal, Sajjad Shaukat ; Idrees, Zeba ; Ahmad, Jawad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Communication</topic><topic>Comparative analysis</topic><topic>Computer Security</topic><topic>Data analysis</topic><topic>Deep Learning</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Industry</topic><topic>Internet of Things</topic><topic>Manufacturing</topic><topic>Review</topic><topic>Sensors</topic><topic>smart industry</topic><topic>Smart sensors</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latif, Shahid</creatorcontrib><creatorcontrib>Driss, Maha</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><creatorcontrib>Huma, Zil E</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><creatorcontrib>Idrees, Zeba</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latif, Shahid</au><au>Driss, Maha</au><au>Boulila, Wadii</au><au>Huma, Zil E</au><au>Jamal, Sajjad Shaukat</au><au>Idrees, Zeba</au><au>Ahmad, Jawad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-11-12</date><risdate>2021</risdate><volume>21</volume><issue>22</issue><spage>7518</spage><pages>7518-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34833594</pmid><doi>10.3390/s21227518</doi><orcidid>https://orcid.org/0000-0001-8236-8746</orcidid><orcidid>https://orcid.org/0000-0002-7918-0440</orcidid><orcidid>https://orcid.org/0000-0002-6368-2729</orcidid><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-0500-1566</orcidid><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-11, Vol.21 (22), p.7518
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0eeb42d00b80478b88fa1683d93aa495
source Publicly Available Content Database; PubMed Central
subjects Actuators
Algorithms
Artificial Intelligence
Big Data
Communication
Comparative analysis
Computer Security
Data analysis
Deep Learning
Industrial applications
Industrial Internet of Things
Industry
Internet of Things
Manufacturing
Review
Sensors
smart industry
Smart sensors
Software
title Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20the%20Industrial%20Internet%20of%20Things%20(IIoT):%20A%20Comprehensive%20Survey%20of%20Techniques,%20Implementation%20Frameworks,%20Potential%20Applications,%20and%20Future%20Directions&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Latif,%20Shahid&rft.date=2021-11-12&rft.volume=21&rft.issue=22&rft.spage=7518&rft.pages=7518-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21227518&rft_dat=%3Cproquest_doaj_%3E2602181378%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602181378&rft_id=info:pmid/34833594&rfr_iscdi=true