Loading…
Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions
The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT fra...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-11, Vol.21 (22), p.7518 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53 |
container_end_page | |
container_issue | 22 |
container_start_page | 7518 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Latif, Shahid Driss, Maha Boulila, Wadii Huma, Zil E Jamal, Sajjad Shaukat Idrees, Zeba Ahmad, Jawad |
description | The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors. |
doi_str_mv | 10.3390/s21227518 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0eeb42d00b80478b88fa1683d93aa495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0eeb42d00b80478b88fa1683d93aa495</doaj_id><sourcerecordid>2602181378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</originalsourceid><addsrcrecordid>eNpdkt9u0zAUxiMEYmNwwQsgS9xsEgX_S-JwgVR1FCJVAolyHTnOSeuS2JntFO2V9pRz2lFtXPnoOz99PufoS5K3BH9krMCfPCWU5ikRz5JzwimfCUrx80f1WfLK-x3GlDEmXiZnjAvG0oKfJ3fXAANagXRGmw1qrUNhC6g0zeiD07KLZQBnICDbovU2Qh5dlqVdX31Gc7Sw_eBgC8brPaBfo9vD7QEEtTX6ZgT_AZX90EEPJsigrUFLJ3v4a92f2PppQ9SnX-bD0Gl1IKIuTYOWYxgdoGvtQB3k18mLVnYe3jy8F8nv5df14vts9eNbuZivZopnRZhBWtR1RmvSpKwArkQrUkqlYhkWSqlaAsmZIIoAzTAnOeVKAZG5AMXyuk3ZRVIefRsrd9XgdC_dbWWlrg6CdZtKuqBVBxUGqDltMK4F5rmohWglyQRrCiYlLyavL0evYax7aFTc1snuienTjtHbamP3lchoikURDS4fDJydzhmqXnsFXScN2NFX0w4YC1JkEX3_H7qzozPxVBNFiSAsF5G6OlLKWe8dtKdhCK6mNFWnNEX23ePpT-S_-LB7NX3G5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602181378</pqid></control><display><type>article</type><title>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Latif, Shahid ; Driss, Maha ; Boulila, Wadii ; Huma, Zil E ; Jamal, Sajjad Shaukat ; Idrees, Zeba ; Ahmad, Jawad</creator><creatorcontrib>Latif, Shahid ; Driss, Maha ; Boulila, Wadii ; Huma, Zil E ; Jamal, Sajjad Shaukat ; Idrees, Zeba ; Ahmad, Jawad</creatorcontrib><description>The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21227518</identifier><identifier>PMID: 34833594</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actuators ; Algorithms ; Artificial Intelligence ; Big Data ; Communication ; Comparative analysis ; Computer Security ; Data analysis ; Deep Learning ; Industrial applications ; Industrial Internet of Things ; Industry ; Internet of Things ; Manufacturing ; Review ; Sensors ; smart industry ; Smart sensors ; Software</subject><ispartof>Sensors (Basel, Switzerland), 2021-11, Vol.21 (22), p.7518</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</citedby><cites>FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</cites><orcidid>0000-0001-8236-8746 ; 0000-0002-7918-0440 ; 0000-0002-6368-2729 ; 0000-0001-6289-8248 ; 0000-0003-0500-1566 ; 0000-0002-5852-1955 ; 0000-0003-2133-0757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602181378/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602181378?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34833594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Latif, Shahid</creatorcontrib><creatorcontrib>Driss, Maha</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><creatorcontrib>Huma, Zil E</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><creatorcontrib>Idrees, Zeba</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><title>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Communication</subject><subject>Comparative analysis</subject><subject>Computer Security</subject><subject>Data analysis</subject><subject>Deep Learning</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Industry</subject><subject>Internet of Things</subject><subject>Manufacturing</subject><subject>Review</subject><subject>Sensors</subject><subject>smart industry</subject><subject>Smart sensors</subject><subject>Software</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9u0zAUxiMEYmNwwQsgS9xsEgX_S-JwgVR1FCJVAolyHTnOSeuS2JntFO2V9pRz2lFtXPnoOz99PufoS5K3BH9krMCfPCWU5ikRz5JzwimfCUrx80f1WfLK-x3GlDEmXiZnjAvG0oKfJ3fXAANagXRGmw1qrUNhC6g0zeiD07KLZQBnICDbovU2Qh5dlqVdX31Gc7Sw_eBgC8brPaBfo9vD7QEEtTX6ZgT_AZX90EEPJsigrUFLJ3v4a92f2PppQ9SnX-bD0Gl1IKIuTYOWYxgdoGvtQB3k18mLVnYe3jy8F8nv5df14vts9eNbuZivZopnRZhBWtR1RmvSpKwArkQrUkqlYhkWSqlaAsmZIIoAzTAnOeVKAZG5AMXyuk3ZRVIefRsrd9XgdC_dbWWlrg6CdZtKuqBVBxUGqDltMK4F5rmohWglyQRrCiYlLyavL0evYax7aFTc1snuienTjtHbamP3lchoikURDS4fDJydzhmqXnsFXScN2NFX0w4YC1JkEX3_H7qzozPxVBNFiSAsF5G6OlLKWe8dtKdhCK6mNFWnNEX23ePpT-S_-LB7NX3G5w</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Latif, Shahid</creator><creator>Driss, Maha</creator><creator>Boulila, Wadii</creator><creator>Huma, Zil E</creator><creator>Jamal, Sajjad Shaukat</creator><creator>Idrees, Zeba</creator><creator>Ahmad, Jawad</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8236-8746</orcidid><orcidid>https://orcid.org/0000-0002-7918-0440</orcidid><orcidid>https://orcid.org/0000-0002-6368-2729</orcidid><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-0500-1566</orcidid><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid></search><sort><creationdate>20211112</creationdate><title>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</title><author>Latif, Shahid ; Driss, Maha ; Boulila, Wadii ; Huma, Zil E ; Jamal, Sajjad Shaukat ; Idrees, Zeba ; Ahmad, Jawad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Communication</topic><topic>Comparative analysis</topic><topic>Computer Security</topic><topic>Data analysis</topic><topic>Deep Learning</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Industry</topic><topic>Internet of Things</topic><topic>Manufacturing</topic><topic>Review</topic><topic>Sensors</topic><topic>smart industry</topic><topic>Smart sensors</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latif, Shahid</creatorcontrib><creatorcontrib>Driss, Maha</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><creatorcontrib>Huma, Zil E</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><creatorcontrib>Idrees, Zeba</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latif, Shahid</au><au>Driss, Maha</au><au>Boulila, Wadii</au><au>Huma, Zil E</au><au>Jamal, Sajjad Shaukat</au><au>Idrees, Zeba</au><au>Ahmad, Jawad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-11-12</date><risdate>2021</risdate><volume>21</volume><issue>22</issue><spage>7518</spage><pages>7518-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34833594</pmid><doi>10.3390/s21227518</doi><orcidid>https://orcid.org/0000-0001-8236-8746</orcidid><orcidid>https://orcid.org/0000-0002-7918-0440</orcidid><orcidid>https://orcid.org/0000-0002-6368-2729</orcidid><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-0500-1566</orcidid><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-11, Vol.21 (22), p.7518 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0eeb42d00b80478b88fa1683d93aa495 |
source | Publicly Available Content Database; PubMed Central |
subjects | Actuators Algorithms Artificial Intelligence Big Data Communication Comparative analysis Computer Security Data analysis Deep Learning Industrial applications Industrial Internet of Things Industry Internet of Things Manufacturing Review Sensors smart industry Smart sensors Software |
title | Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20the%20Industrial%20Internet%20of%20Things%20(IIoT):%20A%20Comprehensive%20Survey%20of%20Techniques,%20Implementation%20Frameworks,%20Potential%20Applications,%20and%20Future%20Directions&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Latif,%20Shahid&rft.date=2021-11-12&rft.volume=21&rft.issue=22&rft.spage=7518&rft.pages=7518-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21227518&rft_dat=%3Cproquest_doaj_%3E2602181378%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e59bb62b1d539e4c8f8522ac3608cccbae17381c1e26041724cce1a78ec37bf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602181378&rft_id=info:pmid/34833594&rfr_iscdi=true |