Loading…
Predictive Models for Non-Alcoholic Fatty Liver Disease Diagnosis in Mexican Patients with Gallstone Disease: Sex-Specific Insights
(1) Background: Evidence regarding Non-Alcoholic Fatty Liver Disease (NAFLD) diagnosis is limited in the context of patients with gallstone disease (GD). This study aimed to assess the predictive potential of conventional clinical and biochemical variables as combined models for diagnosing NAFLD in...
Saved in:
Published in: | Diagnostics (Basel) 2024-07, Vol.14 (14), p.1487 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-5da35a883a4abe42ffbd7a7581166bd5409ea82ea8597813b0c444969b63f56a3 |
container_end_page | |
container_issue | 14 |
container_start_page | 1487 |
container_title | Diagnostics (Basel) |
container_volume | 14 |
creator | Rodríguez-Hernández, Nemry Lazo-de-la-Vega-Monroy, María-Luisa Ruiz-Noa, Yeniley Preciado-Puga, Monica-Del-Carmen Garcia-Ramirez, Juana-Rosalba Jordan-Perez, Benjamin Garnelo-Cabañas, Serafin Ibarra-Reynoso, Lorena-Del-Rocío |
description | (1) Background: Evidence regarding Non-Alcoholic Fatty Liver Disease (NAFLD) diagnosis is limited in the context of patients with gallstone disease (GD). This study aimed to assess the predictive potential of conventional clinical and biochemical variables as combined models for diagnosing NAFLD in patients with GD. (2) Methods: A cross-sectional study including 239 patients with GD and NAFLD diagnosed by ultrasonography who underwent laparoscopic cholecystectomy and liver biopsy was conducted. Previous clinical indices were also determined. Predictive models for the presence of NAFLD stratified by biological sex were obtained through binary logistic regression and sensitivity analyses were performed. (3) Results: For women, the model included total cholesterol (TC), age and alanine aminotransferase (ALT) and showed an area under receiver operating characteristic curve (AUC) of 0.727 (
< 0.001), sensitivity of 0.831 and a specificity of 0.517. For men, the model included TC, body mass index (BMI) and aspartate aminotransferase (AST), had an AUC of 0.898 (
< 0.001), sensitivity of 0.917 and specificity of 0.818. In both sexes, the diagnostic performance of the designed equations was superior to the previous indices. (4) Conclusions: These models have the potential to offer valuable guidance to healthcare providers in clinical decision-making, enabling them to achieve optimal outcomes for each patient. |
doi_str_mv | 10.3390/diagnostics14141487 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0efa351a99494da584bfc6960a7e28c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803767137</galeid><doaj_id>oai_doaj_org_article_0efa351a99494da584bfc6960a7e28c3</doaj_id><sourcerecordid>A803767137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-5da35a883a4abe42ffbd7a7581166bd5409ea82ea8597813b0c444969b63f56a3</originalsourceid><addsrcrecordid>eNptUttqGzEQXUpLE9J8QaEI-tKXTaWVtCv1zeRWg9MEkj4vs9qRLbNeuZKcJs_98cpxkl6IBjHDcM6ZC1MU7xk94lzTz72D-ehjciYysTXVvCr2K9rIUgimXv8V7xWHMS5pfppxVcm3xV5WqFldif3i11XA3pnkbpFc-B6HSKwP5Jsfy8lg_MIPzpAzSOmezDImkBMXESJm_9CAi8SN5ALvnIGRXEFyOKZIfrq0IOcwDDH5EZ9IX8g13pXXazTOZtnpGN18keK74o2FIeLhoz8ovp-d3hx_LWeX59Pjyaw0XLNUyh64BKU4COhQVNZ2fQONVIzVdddLQTWCqvKXulGMd9QIIXStu5pbWQM_KKY73d7Dsl0Ht4Jw33pw7UPCh3kLIW90wJaizcUYaC206EEq0VlT65pCg5UyPGt92mmtg_-xwZjalYsGhwFG9JvYcqokY0IynaEf_4Mu_SaMedItSjRaykr9Qc0h13ej9SmA2Yq2E0V5UzeMNxl19AIqW48rZ_Kqrcv5fwh8RzDBxxjQPs_NaLu9pPaFS8qsD48tb7oV9s-cp7vhvwG6fsVO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084795528</pqid></control><display><type>article</type><title>Predictive Models for Non-Alcoholic Fatty Liver Disease Diagnosis in Mexican Patients with Gallstone Disease: Sex-Specific Insights</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Rodríguez-Hernández, Nemry ; Lazo-de-la-Vega-Monroy, María-Luisa ; Ruiz-Noa, Yeniley ; Preciado-Puga, Monica-Del-Carmen ; Garcia-Ramirez, Juana-Rosalba ; Jordan-Perez, Benjamin ; Garnelo-Cabañas, Serafin ; Ibarra-Reynoso, Lorena-Del-Rocío</creator><creatorcontrib>Rodríguez-Hernández, Nemry ; Lazo-de-la-Vega-Monroy, María-Luisa ; Ruiz-Noa, Yeniley ; Preciado-Puga, Monica-Del-Carmen ; Garcia-Ramirez, Juana-Rosalba ; Jordan-Perez, Benjamin ; Garnelo-Cabañas, Serafin ; Ibarra-Reynoso, Lorena-Del-Rocío</creatorcontrib><description>(1) Background: Evidence regarding Non-Alcoholic Fatty Liver Disease (NAFLD) diagnosis is limited in the context of patients with gallstone disease (GD). This study aimed to assess the predictive potential of conventional clinical and biochemical variables as combined models for diagnosing NAFLD in patients with GD. (2) Methods: A cross-sectional study including 239 patients with GD and NAFLD diagnosed by ultrasonography who underwent laparoscopic cholecystectomy and liver biopsy was conducted. Previous clinical indices were also determined. Predictive models for the presence of NAFLD stratified by biological sex were obtained through binary logistic regression and sensitivity analyses were performed. (3) Results: For women, the model included total cholesterol (TC), age and alanine aminotransferase (ALT) and showed an area under receiver operating characteristic curve (AUC) of 0.727 (
< 0.001), sensitivity of 0.831 and a specificity of 0.517. For men, the model included TC, body mass index (BMI) and aspartate aminotransferase (AST), had an AUC of 0.898 (
< 0.001), sensitivity of 0.917 and specificity of 0.818. In both sexes, the diagnostic performance of the designed equations was superior to the previous indices. (4) Conclusions: These models have the potential to offer valuable guidance to healthcare providers in clinical decision-making, enabling them to achieve optimal outcomes for each patient.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics14141487</identifier><identifier>PMID: 39061624</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biopsy ; Body mass index ; Cholecystectomy ; Decision-making ; Diseases ; Fatty liver ; Gallbladder ; gallstone disease ; Gallstones ; Glucose ; Health care industry ; High density lipoprotein ; Hospitals ; Inflammation ; Laparoscopy ; Liver cirrhosis ; Liver diseases ; Medical diagnosis ; Metabolic syndrome ; Mexico ; NAFLD diagnosis ; Obesity ; Patients ; predictive models ; sex-specific variations ; Type 2 diabetes ; Ultrasonic imaging ; Weight control ; Womens health</subject><ispartof>Diagnostics (Basel), 2024-07, Vol.14 (14), p.1487</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c391t-5da35a883a4abe42ffbd7a7581166bd5409ea82ea8597813b0c444969b63f56a3</cites><orcidid>0000-0001-7646-2605 ; 0000-0002-6119-1328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084795528/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084795528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39061624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Hernández, Nemry</creatorcontrib><creatorcontrib>Lazo-de-la-Vega-Monroy, María-Luisa</creatorcontrib><creatorcontrib>Ruiz-Noa, Yeniley</creatorcontrib><creatorcontrib>Preciado-Puga, Monica-Del-Carmen</creatorcontrib><creatorcontrib>Garcia-Ramirez, Juana-Rosalba</creatorcontrib><creatorcontrib>Jordan-Perez, Benjamin</creatorcontrib><creatorcontrib>Garnelo-Cabañas, Serafin</creatorcontrib><creatorcontrib>Ibarra-Reynoso, Lorena-Del-Rocío</creatorcontrib><title>Predictive Models for Non-Alcoholic Fatty Liver Disease Diagnosis in Mexican Patients with Gallstone Disease: Sex-Specific Insights</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>(1) Background: Evidence regarding Non-Alcoholic Fatty Liver Disease (NAFLD) diagnosis is limited in the context of patients with gallstone disease (GD). This study aimed to assess the predictive potential of conventional clinical and biochemical variables as combined models for diagnosing NAFLD in patients with GD. (2) Methods: A cross-sectional study including 239 patients with GD and NAFLD diagnosed by ultrasonography who underwent laparoscopic cholecystectomy and liver biopsy was conducted. Previous clinical indices were also determined. Predictive models for the presence of NAFLD stratified by biological sex were obtained through binary logistic regression and sensitivity analyses were performed. (3) Results: For women, the model included total cholesterol (TC), age and alanine aminotransferase (ALT) and showed an area under receiver operating characteristic curve (AUC) of 0.727 (
< 0.001), sensitivity of 0.831 and a specificity of 0.517. For men, the model included TC, body mass index (BMI) and aspartate aminotransferase (AST), had an AUC of 0.898 (
< 0.001), sensitivity of 0.917 and specificity of 0.818. In both sexes, the diagnostic performance of the designed equations was superior to the previous indices. (4) Conclusions: These models have the potential to offer valuable guidance to healthcare providers in clinical decision-making, enabling them to achieve optimal outcomes for each patient.</description><subject>Biopsy</subject><subject>Body mass index</subject><subject>Cholecystectomy</subject><subject>Decision-making</subject><subject>Diseases</subject><subject>Fatty liver</subject><subject>Gallbladder</subject><subject>gallstone disease</subject><subject>Gallstones</subject><subject>Glucose</subject><subject>Health care industry</subject><subject>High density lipoprotein</subject><subject>Hospitals</subject><subject>Inflammation</subject><subject>Laparoscopy</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Medical diagnosis</subject><subject>Metabolic syndrome</subject><subject>Mexico</subject><subject>NAFLD diagnosis</subject><subject>Obesity</subject><subject>Patients</subject><subject>predictive models</subject><subject>sex-specific variations</subject><subject>Type 2 diabetes</subject><subject>Ultrasonic imaging</subject><subject>Weight control</subject><subject>Womens health</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUttqGzEQXUpLE9J8QaEI-tKXTaWVtCv1zeRWg9MEkj4vs9qRLbNeuZKcJs_98cpxkl6IBjHDcM6ZC1MU7xk94lzTz72D-ehjciYysTXVvCr2K9rIUgimXv8V7xWHMS5pfppxVcm3xV5WqFldif3i11XA3pnkbpFc-B6HSKwP5Jsfy8lg_MIPzpAzSOmezDImkBMXESJm_9CAi8SN5ALvnIGRXEFyOKZIfrq0IOcwDDH5EZ9IX8g13pXXazTOZtnpGN18keK74o2FIeLhoz8ovp-d3hx_LWeX59Pjyaw0XLNUyh64BKU4COhQVNZ2fQONVIzVdddLQTWCqvKXulGMd9QIIXStu5pbWQM_KKY73d7Dsl0Ht4Jw33pw7UPCh3kLIW90wJaizcUYaC206EEq0VlT65pCg5UyPGt92mmtg_-xwZjalYsGhwFG9JvYcqokY0IynaEf_4Mu_SaMedItSjRaykr9Qc0h13ej9SmA2Yq2E0V5UzeMNxl19AIqW48rZ_Kqrcv5fwh8RzDBxxjQPs_NaLu9pPaFS8qsD48tb7oV9s-cp7vhvwG6fsVO</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Rodríguez-Hernández, Nemry</creator><creator>Lazo-de-la-Vega-Monroy, María-Luisa</creator><creator>Ruiz-Noa, Yeniley</creator><creator>Preciado-Puga, Monica-Del-Carmen</creator><creator>Garcia-Ramirez, Juana-Rosalba</creator><creator>Jordan-Perez, Benjamin</creator><creator>Garnelo-Cabañas, Serafin</creator><creator>Ibarra-Reynoso, Lorena-Del-Rocío</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7646-2605</orcidid><orcidid>https://orcid.org/0000-0002-6119-1328</orcidid></search><sort><creationdate>20240701</creationdate><title>Predictive Models for Non-Alcoholic Fatty Liver Disease Diagnosis in Mexican Patients with Gallstone Disease: Sex-Specific Insights</title><author>Rodríguez-Hernández, Nemry ; Lazo-de-la-Vega-Monroy, María-Luisa ; Ruiz-Noa, Yeniley ; Preciado-Puga, Monica-Del-Carmen ; Garcia-Ramirez, Juana-Rosalba ; Jordan-Perez, Benjamin ; Garnelo-Cabañas, Serafin ; Ibarra-Reynoso, Lorena-Del-Rocío</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-5da35a883a4abe42ffbd7a7581166bd5409ea82ea8597813b0c444969b63f56a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biopsy</topic><topic>Body mass index</topic><topic>Cholecystectomy</topic><topic>Decision-making</topic><topic>Diseases</topic><topic>Fatty liver</topic><topic>Gallbladder</topic><topic>gallstone disease</topic><topic>Gallstones</topic><topic>Glucose</topic><topic>Health care industry</topic><topic>High density lipoprotein</topic><topic>Hospitals</topic><topic>Inflammation</topic><topic>Laparoscopy</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Medical diagnosis</topic><topic>Metabolic syndrome</topic><topic>Mexico</topic><topic>NAFLD diagnosis</topic><topic>Obesity</topic><topic>Patients</topic><topic>predictive models</topic><topic>sex-specific variations</topic><topic>Type 2 diabetes</topic><topic>Ultrasonic imaging</topic><topic>Weight control</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Hernández, Nemry</creatorcontrib><creatorcontrib>Lazo-de-la-Vega-Monroy, María-Luisa</creatorcontrib><creatorcontrib>Ruiz-Noa, Yeniley</creatorcontrib><creatorcontrib>Preciado-Puga, Monica-Del-Carmen</creatorcontrib><creatorcontrib>Garcia-Ramirez, Juana-Rosalba</creatorcontrib><creatorcontrib>Jordan-Perez, Benjamin</creatorcontrib><creatorcontrib>Garnelo-Cabañas, Serafin</creatorcontrib><creatorcontrib>Ibarra-Reynoso, Lorena-Del-Rocío</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Hernández, Nemry</au><au>Lazo-de-la-Vega-Monroy, María-Luisa</au><au>Ruiz-Noa, Yeniley</au><au>Preciado-Puga, Monica-Del-Carmen</au><au>Garcia-Ramirez, Juana-Rosalba</au><au>Jordan-Perez, Benjamin</au><au>Garnelo-Cabañas, Serafin</au><au>Ibarra-Reynoso, Lorena-Del-Rocío</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Models for Non-Alcoholic Fatty Liver Disease Diagnosis in Mexican Patients with Gallstone Disease: Sex-Specific Insights</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>14</issue><spage>1487</spage><pages>1487-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>(1) Background: Evidence regarding Non-Alcoholic Fatty Liver Disease (NAFLD) diagnosis is limited in the context of patients with gallstone disease (GD). This study aimed to assess the predictive potential of conventional clinical and biochemical variables as combined models for diagnosing NAFLD in patients with GD. (2) Methods: A cross-sectional study including 239 patients with GD and NAFLD diagnosed by ultrasonography who underwent laparoscopic cholecystectomy and liver biopsy was conducted. Previous clinical indices were also determined. Predictive models for the presence of NAFLD stratified by biological sex were obtained through binary logistic regression and sensitivity analyses were performed. (3) Results: For women, the model included total cholesterol (TC), age and alanine aminotransferase (ALT) and showed an area under receiver operating characteristic curve (AUC) of 0.727 (
< 0.001), sensitivity of 0.831 and a specificity of 0.517. For men, the model included TC, body mass index (BMI) and aspartate aminotransferase (AST), had an AUC of 0.898 (
< 0.001), sensitivity of 0.917 and specificity of 0.818. In both sexes, the diagnostic performance of the designed equations was superior to the previous indices. (4) Conclusions: These models have the potential to offer valuable guidance to healthcare providers in clinical decision-making, enabling them to achieve optimal outcomes for each patient.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39061624</pmid><doi>10.3390/diagnostics14141487</doi><orcidid>https://orcid.org/0000-0001-7646-2605</orcidid><orcidid>https://orcid.org/0000-0002-6119-1328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4418 |
ispartof | Diagnostics (Basel), 2024-07, Vol.14 (14), p.1487 |
issn | 2075-4418 2075-4418 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0efa351a99494da584bfc6960a7e28c3 |
source | Publicly Available Content Database; PubMed Central |
subjects | Biopsy Body mass index Cholecystectomy Decision-making Diseases Fatty liver Gallbladder gallstone disease Gallstones Glucose Health care industry High density lipoprotein Hospitals Inflammation Laparoscopy Liver cirrhosis Liver diseases Medical diagnosis Metabolic syndrome Mexico NAFLD diagnosis Obesity Patients predictive models sex-specific variations Type 2 diabetes Ultrasonic imaging Weight control Womens health |
title | Predictive Models for Non-Alcoholic Fatty Liver Disease Diagnosis in Mexican Patients with Gallstone Disease: Sex-Specific Insights |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Models%20for%20Non-Alcoholic%20Fatty%20Liver%20Disease%20Diagnosis%20in%20Mexican%20Patients%20with%20Gallstone%20Disease:%20Sex-Specific%20Insights&rft.jtitle=Diagnostics%20(Basel)&rft.au=Rodr%C3%ADguez-Hern%C3%A1ndez,%20Nemry&rft.date=2024-07-01&rft.volume=14&rft.issue=14&rft.spage=1487&rft.pages=1487-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics14141487&rft_dat=%3Cgale_doaj_%3EA803767137%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-5da35a883a4abe42ffbd7a7581166bd5409ea82ea8597813b0c444969b63f56a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084795528&rft_id=info:pmid/39061624&rft_galeid=A803767137&rfr_iscdi=true |