Loading…

Ultra-broadband directional thermal emission

Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ material...

Full description

Saved in:
Bibliographic Details
Published in:Nanophotonics (Berlin, Germany) Germany), 2024-03, Vol.13 (5), p.793-801
Main Authors: Wang, Qiuyu, Liu, Tianji, Li, Longnan, Huang, Chen, Wang, Jiawei, Xiao, Meng, Li, Yang, Li, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03
cites cdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03
container_end_page 801
container_issue 5
container_start_page 793
container_title Nanophotonics (Berlin, Germany)
container_volume 13
creator Wang, Qiuyu
Liu, Tianji
Li, Longnan
Huang, Chen
Wang, Jiawei
Xiao, Meng
Li, Yang
Li, Wei
description Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.
doi_str_mv 10.1515/nanoph-2023-0742
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0efe70f57742461db0e97b890cfa9e16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0efe70f57742461db0e97b890cfa9e16</doaj_id><sourcerecordid>2955187821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</originalsourceid><addsrcrecordid>eNp1UcFu1DAQjRCIVqV3TqgSFw4EZuzYji-gqoK2UiUu7dly7PFuVtl4sRNQ_75e0pYWCV9mNH7zZua9qnqL8AkFis-jHeNuXTNgvAbVsBfVIUPN6lZi8_JJflAd57yB8rTmqOXr6oBryQXo9rD6eDNMydZditZ3dvQnvk_kpj6OdjiZ1pS2JdK2z7mU3lSvgh0yHd_Ho-rm-7frs4v66sf55dnpVe0aibzumLQkkXhA4NwBWUcCW2g616KzlgOEQFqzlmRDnQIlfcMkKnIhKA_8qLpceH20G7NL_damWxNtb_4UYloZm6beDWSAAikIQhUBynDfAWnVtRpcsJpQFq6vC9du7rbkHY3l3uEZ6fOfsV-bVfxlEAUgYlMYPtwzpPhzpjyZIoejYbAjxTkbjo0UDAHbAn3_D3QT51SkzIZpUTRQLcOCggXlUsw5UXjcBsHsrTWLtWZvrdlbW1rePb3iseHByAL4sgB-22Gi5GmV5tuS_F3gf9zIhdKc3wH9z7Q3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955187821</pqid></control><display><type>article</type><title>Ultra-broadband directional thermal emission</title><source>Publicly Available Content Database</source><source>De Gruyter Open Access Journals</source><source>PubMed Central</source><creator>Wang, Qiuyu ; Liu, Tianji ; Li, Longnan ; Huang, Chen ; Wang, Jiawei ; Xiao, Meng ; Li, Yang ; Li, Wei</creator><creatorcontrib>Wang, Qiuyu ; Liu, Tianji ; Li, Longnan ; Huang, Chen ; Wang, Jiawei ; Xiao, Meng ; Li, Yang ; Li, Wei</creatorcontrib><description>Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity &gt;0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.</description><identifier>ISSN: 2192-8614</identifier><identifier>ISSN: 2192-8606</identifier><identifier>EISSN: 2192-8614</identifier><identifier>DOI: 10.1515/nanoph-2023-0742</identifier><identifier>PMID: 39635098</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>Bandwidths ; Broadband ; broadband directional thermal emission ; Directional control ; Effective medium theory ; Efficiency ; Emitters ; Laboratories ; metamaterial ; Multilayers ; Neutrons ; Photonics ; Physics ; Radiation ; Thermal emission ; Thermal utilization</subject><ispartof>Nanophotonics (Berlin, Germany), 2024-03, Vol.13 (5), p.793-801</ispartof><rights>2024 the author(s), published by De Gruyter, Berlin/Boston.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 the author(s), published by De Gruyter, Berlin/Boston 2024 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</citedby><cites>FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</cites><orcidid>0009-0000-8398-6167 ; 0000-0002-2227-9431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2955187821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,67129,68913</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39635098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Liu, Tianji</creatorcontrib><creatorcontrib>Li, Longnan</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><title>Ultra-broadband directional thermal emission</title><title>Nanophotonics (Berlin, Germany)</title><addtitle>Nanophotonics</addtitle><description>Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity &gt;0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>broadband directional thermal emission</subject><subject>Directional control</subject><subject>Effective medium theory</subject><subject>Efficiency</subject><subject>Emitters</subject><subject>Laboratories</subject><subject>metamaterial</subject><subject>Multilayers</subject><subject>Neutrons</subject><subject>Photonics</subject><subject>Physics</subject><subject>Radiation</subject><subject>Thermal emission</subject><subject>Thermal utilization</subject><issn>2192-8614</issn><issn>2192-8606</issn><issn>2192-8614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UcFu1DAQjRCIVqV3TqgSFw4EZuzYji-gqoK2UiUu7dly7PFuVtl4sRNQ_75e0pYWCV9mNH7zZua9qnqL8AkFis-jHeNuXTNgvAbVsBfVIUPN6lZi8_JJflAd57yB8rTmqOXr6oBryQXo9rD6eDNMydZditZ3dvQnvk_kpj6OdjiZ1pS2JdK2z7mU3lSvgh0yHd_Ho-rm-7frs4v66sf55dnpVe0aibzumLQkkXhA4NwBWUcCW2g616KzlgOEQFqzlmRDnQIlfcMkKnIhKA_8qLpceH20G7NL_damWxNtb_4UYloZm6beDWSAAikIQhUBynDfAWnVtRpcsJpQFq6vC9du7rbkHY3l3uEZ6fOfsV-bVfxlEAUgYlMYPtwzpPhzpjyZIoejYbAjxTkbjo0UDAHbAn3_D3QT51SkzIZpUTRQLcOCggXlUsw5UXjcBsHsrTWLtWZvrdlbW1rePb3iseHByAL4sgB-22Gi5GmV5tuS_F3gf9zIhdKc3wH9z7Q3</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Qiuyu</creator><creator>Liu, Tianji</creator><creator>Li, Longnan</creator><creator>Huang, Chen</creator><creator>Wang, Jiawei</creator><creator>Xiao, Meng</creator><creator>Li, Yang</creator><creator>Li, Wei</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-8398-6167</orcidid><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid></search><sort><creationdate>20240301</creationdate><title>Ultra-broadband directional thermal emission</title><author>Wang, Qiuyu ; Liu, Tianji ; Li, Longnan ; Huang, Chen ; Wang, Jiawei ; Xiao, Meng ; Li, Yang ; Li, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>broadband directional thermal emission</topic><topic>Directional control</topic><topic>Effective medium theory</topic><topic>Efficiency</topic><topic>Emitters</topic><topic>Laboratories</topic><topic>metamaterial</topic><topic>Multilayers</topic><topic>Neutrons</topic><topic>Photonics</topic><topic>Physics</topic><topic>Radiation</topic><topic>Thermal emission</topic><topic>Thermal utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Liu, Tianji</creatorcontrib><creatorcontrib>Li, Longnan</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanophotonics (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiuyu</au><au>Liu, Tianji</au><au>Li, Longnan</au><au>Huang, Chen</au><au>Wang, Jiawei</au><au>Xiao, Meng</au><au>Li, Yang</au><au>Li, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-broadband directional thermal emission</atitle><jtitle>Nanophotonics (Berlin, Germany)</jtitle><addtitle>Nanophotonics</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>13</volume><issue>5</issue><spage>793</spage><epage>801</epage><pages>793-801</pages><issn>2192-8614</issn><issn>2192-8606</issn><eissn>2192-8614</eissn><abstract>Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity &gt;0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>39635098</pmid><doi>10.1515/nanoph-2023-0742</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0000-8398-6167</orcidid><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-8614
ispartof Nanophotonics (Berlin, Germany), 2024-03, Vol.13 (5), p.793-801
issn 2192-8614
2192-8606
2192-8614
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0efe70f57742461db0e97b890cfa9e16
source Publicly Available Content Database; De Gruyter Open Access Journals; PubMed Central
subjects Bandwidths
Broadband
broadband directional thermal emission
Directional control
Effective medium theory
Efficiency
Emitters
Laboratories
metamaterial
Multilayers
Neutrons
Photonics
Physics
Radiation
Thermal emission
Thermal utilization
title Ultra-broadband directional thermal emission
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T00%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-broadband%20directional%20thermal%20emission&rft.jtitle=Nanophotonics%20(Berlin,%20Germany)&rft.au=Wang,%20Qiuyu&rft.date=2024-03-01&rft.volume=13&rft.issue=5&rft.spage=793&rft.epage=801&rft.pages=793-801&rft.issn=2192-8614&rft.eissn=2192-8614&rft_id=info:doi/10.1515/nanoph-2023-0742&rft_dat=%3Cproquest_doaj_%3E2955187821%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955187821&rft_id=info:pmid/39635098&rfr_iscdi=true