Loading…
Ultra-broadband directional thermal emission
Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ material...
Saved in:
Published in: | Nanophotonics (Berlin, Germany) Germany), 2024-03, Vol.13 (5), p.793-801 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03 |
container_end_page | 801 |
container_issue | 5 |
container_start_page | 793 |
container_title | Nanophotonics (Berlin, Germany) |
container_volume | 13 |
creator | Wang, Qiuyu Liu, Tianji Li, Longnan Huang, Chen Wang, Jiawei Xiao, Meng Li, Yang Li, Wei |
description | Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection. |
doi_str_mv | 10.1515/nanoph-2023-0742 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0efe70f57742461db0e97b890cfa9e16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0efe70f57742461db0e97b890cfa9e16</doaj_id><sourcerecordid>2955187821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</originalsourceid><addsrcrecordid>eNp1UcFu1DAQjRCIVqV3TqgSFw4EZuzYji-gqoK2UiUu7dly7PFuVtl4sRNQ_75e0pYWCV9mNH7zZua9qnqL8AkFis-jHeNuXTNgvAbVsBfVIUPN6lZi8_JJflAd57yB8rTmqOXr6oBryQXo9rD6eDNMydZditZ3dvQnvk_kpj6OdjiZ1pS2JdK2z7mU3lSvgh0yHd_Ho-rm-7frs4v66sf55dnpVe0aibzumLQkkXhA4NwBWUcCW2g616KzlgOEQFqzlmRDnQIlfcMkKnIhKA_8qLpceH20G7NL_damWxNtb_4UYloZm6beDWSAAikIQhUBynDfAWnVtRpcsJpQFq6vC9du7rbkHY3l3uEZ6fOfsV-bVfxlEAUgYlMYPtwzpPhzpjyZIoejYbAjxTkbjo0UDAHbAn3_D3QT51SkzIZpUTRQLcOCggXlUsw5UXjcBsHsrTWLtWZvrdlbW1rePb3iseHByAL4sgB-22Gi5GmV5tuS_F3gf9zIhdKc3wH9z7Q3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955187821</pqid></control><display><type>article</type><title>Ultra-broadband directional thermal emission</title><source>Publicly Available Content Database</source><source>De Gruyter Open Access Journals</source><source>PubMed Central</source><creator>Wang, Qiuyu ; Liu, Tianji ; Li, Longnan ; Huang, Chen ; Wang, Jiawei ; Xiao, Meng ; Li, Yang ; Li, Wei</creator><creatorcontrib>Wang, Qiuyu ; Liu, Tianji ; Li, Longnan ; Huang, Chen ; Wang, Jiawei ; Xiao, Meng ; Li, Yang ; Li, Wei</creatorcontrib><description>Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.</description><identifier>ISSN: 2192-8614</identifier><identifier>ISSN: 2192-8606</identifier><identifier>EISSN: 2192-8614</identifier><identifier>DOI: 10.1515/nanoph-2023-0742</identifier><identifier>PMID: 39635098</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>Bandwidths ; Broadband ; broadband directional thermal emission ; Directional control ; Effective medium theory ; Efficiency ; Emitters ; Laboratories ; metamaterial ; Multilayers ; Neutrons ; Photonics ; Physics ; Radiation ; Thermal emission ; Thermal utilization</subject><ispartof>Nanophotonics (Berlin, Germany), 2024-03, Vol.13 (5), p.793-801</ispartof><rights>2024 the author(s), published by De Gruyter, Berlin/Boston.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 the author(s), published by De Gruyter, Berlin/Boston 2024 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</citedby><cites>FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</cites><orcidid>0009-0000-8398-6167 ; 0000-0002-2227-9431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2955187821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,67129,68913</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39635098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Liu, Tianji</creatorcontrib><creatorcontrib>Li, Longnan</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><title>Ultra-broadband directional thermal emission</title><title>Nanophotonics (Berlin, Germany)</title><addtitle>Nanophotonics</addtitle><description>Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>broadband directional thermal emission</subject><subject>Directional control</subject><subject>Effective medium theory</subject><subject>Efficiency</subject><subject>Emitters</subject><subject>Laboratories</subject><subject>metamaterial</subject><subject>Multilayers</subject><subject>Neutrons</subject><subject>Photonics</subject><subject>Physics</subject><subject>Radiation</subject><subject>Thermal emission</subject><subject>Thermal utilization</subject><issn>2192-8614</issn><issn>2192-8606</issn><issn>2192-8614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UcFu1DAQjRCIVqV3TqgSFw4EZuzYji-gqoK2UiUu7dly7PFuVtl4sRNQ_75e0pYWCV9mNH7zZua9qnqL8AkFis-jHeNuXTNgvAbVsBfVIUPN6lZi8_JJflAd57yB8rTmqOXr6oBryQXo9rD6eDNMydZditZ3dvQnvk_kpj6OdjiZ1pS2JdK2z7mU3lSvgh0yHd_Ho-rm-7frs4v66sf55dnpVe0aibzumLQkkXhA4NwBWUcCW2g616KzlgOEQFqzlmRDnQIlfcMkKnIhKA_8qLpceH20G7NL_damWxNtb_4UYloZm6beDWSAAikIQhUBynDfAWnVtRpcsJpQFq6vC9du7rbkHY3l3uEZ6fOfsV-bVfxlEAUgYlMYPtwzpPhzpjyZIoejYbAjxTkbjo0UDAHbAn3_D3QT51SkzIZpUTRQLcOCggXlUsw5UXjcBsHsrTWLtWZvrdlbW1rePb3iseHByAL4sgB-22Gi5GmV5tuS_F3gf9zIhdKc3wH9z7Q3</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Qiuyu</creator><creator>Liu, Tianji</creator><creator>Li, Longnan</creator><creator>Huang, Chen</creator><creator>Wang, Jiawei</creator><creator>Xiao, Meng</creator><creator>Li, Yang</creator><creator>Li, Wei</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-8398-6167</orcidid><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid></search><sort><creationdate>20240301</creationdate><title>Ultra-broadband directional thermal emission</title><author>Wang, Qiuyu ; Liu, Tianji ; Li, Longnan ; Huang, Chen ; Wang, Jiawei ; Xiao, Meng ; Li, Yang ; Li, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>broadband directional thermal emission</topic><topic>Directional control</topic><topic>Effective medium theory</topic><topic>Efficiency</topic><topic>Emitters</topic><topic>Laboratories</topic><topic>metamaterial</topic><topic>Multilayers</topic><topic>Neutrons</topic><topic>Photonics</topic><topic>Physics</topic><topic>Radiation</topic><topic>Thermal emission</topic><topic>Thermal utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Liu, Tianji</creatorcontrib><creatorcontrib>Li, Longnan</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanophotonics (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiuyu</au><au>Liu, Tianji</au><au>Li, Longnan</au><au>Huang, Chen</au><au>Wang, Jiawei</au><au>Xiao, Meng</au><au>Li, Yang</au><au>Li, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-broadband directional thermal emission</atitle><jtitle>Nanophotonics (Berlin, Germany)</jtitle><addtitle>Nanophotonics</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>13</volume><issue>5</issue><spage>793</spage><epage>801</epage><pages>793-801</pages><issn>2192-8614</issn><issn>2192-8606</issn><eissn>2192-8614</eissn><abstract>Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>39635098</pmid><doi>10.1515/nanoph-2023-0742</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0000-8398-6167</orcidid><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-8614 |
ispartof | Nanophotonics (Berlin, Germany), 2024-03, Vol.13 (5), p.793-801 |
issn | 2192-8614 2192-8606 2192-8614 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0efe70f57742461db0e97b890cfa9e16 |
source | Publicly Available Content Database; De Gruyter Open Access Journals; PubMed Central |
subjects | Bandwidths Broadband broadband directional thermal emission Directional control Effective medium theory Efficiency Emitters Laboratories metamaterial Multilayers Neutrons Photonics Physics Radiation Thermal emission Thermal utilization |
title | Ultra-broadband directional thermal emission |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T00%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-broadband%20directional%20thermal%20emission&rft.jtitle=Nanophotonics%20(Berlin,%20Germany)&rft.au=Wang,%20Qiuyu&rft.date=2024-03-01&rft.volume=13&rft.issue=5&rft.spage=793&rft.epage=801&rft.pages=793-801&rft.issn=2192-8614&rft.eissn=2192-8614&rft_id=info:doi/10.1515/nanoph-2023-0742&rft_dat=%3Cproquest_doaj_%3E2955187821%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4613-b26ae61e3f1033c0eace51804bc81caa300ffe9928e64eb7076d42617ecff7d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955187821&rft_id=info:pmid/39635098&rfr_iscdi=true |