Loading…
Bipolar Neutrosophic Dombi-Based Heronian Mean Operators and Their Application in Multi-criteria Decision-Making Problems
Dombi operations based on the Dombi t-norm (TN) and t-conorm (TCN) have the advantage in terms of operational parameter flexibility in dealing with varying degrees of uncertainty and aggregation requirements. Meanwhile, Heronian mean (HM) operator is an effective technique for capturing the interrel...
Saved in:
Published in: | International journal of computational intelligence systems 2024-07, Vol.17 (1), p.1-22, Article 181 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-3fd266913a9dae055a1cb4e45e626534fd1667db0d8441be262e9e7a265000133 |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of computational intelligence systems |
container_volume | 17 |
creator | Yaacob, Siti Nurhidayah Hashim, Hazwani Awang, Noor Azzah Sulaiman, Nor Hashimah Al-Quran, Ashraf Abdullah, Lazim |
description | Dombi operations based on the Dombi t-norm (TN) and t-conorm (TCN) have the advantage in terms of operational parameter flexibility in dealing with varying degrees of uncertainty and aggregation requirements. Meanwhile, Heronian mean (HM) operator is an effective technique for capturing the interrelationship between any number of inputs. Bipolar neutrosophic set (BNS) offers the ability to represent both positive and negative information as well as indeterminate information. It is beneficial in cases where there is uncertainty or insufficient information. However, the existing Dombi operator under BNS do not take into account the interrelationship between input arguments. To overcome this limitation, this study incorporates Dombi operator into HM and propose the bipolar neutrosophic Dombi Heronian mean aggregation operator. This paper introduces two type of aggregation operators namely bipolar neutrosophic Dombi-based generalized weighted Heronian mean (BND-GWHM), and bipolar neutrosophic Dombi-based improved generalized weighted Heronian mean (BND-IGWHM). The proposed operators are integrated into MCDM procedure. The influence of different parameter values on decision-making results is discussed. Finally, a comparison analysis with existing methods is also provided. |
doi_str_mv | 10.1007/s44196-024-00544-2 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f20c849f9004fb8adb950337eca2505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f20c849f9004fb8adb950337eca2505</doaj_id><sourcerecordid>oai_doaj_org_article_0f20c849f9004fb8adb950337eca2505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-3fd266913a9dae055a1cb4e45e626534fd1667db0d8441be262e9e7a265000133</originalsourceid><addsrcrecordid>eNp9UctOHDEQHKFECgJ-ICf_gJP2c2aOPJKABCEHcrZ67J7Fy-x4ZM8e-PsYNkKcuHS3urtKqqqm-SrgmwBovxetRW85SM0BjNZcHjXHomsNt12nPr2bvzRnpWwBQAoNoPVx83wRlzRhZr9pv-ZU0vIYPbtKuyHyCywU2DXlNEec2R3Vcr9QxjXlwnAO7OGRYmbnyzJFj2tMM4v1bz-tkfscV8oR2RX5WOqJ3-FTnDfsT07DRLty2nwecSp09r-fNH9__ni4vOa3979uLs9vuVcCVq7GIK3thcI-IIExKPygSRuy0hqlxyCsbcMAoas2DCStpJ5arMeqUyh10twceEPCrVty3GF-dgmje12kvHGY1-gncjBK8J3ux76aMw4dhqE3oFRLHqUBU7nkgctXq0qm8Y1PgHvJwh2ycDUL95qFkxWkDqBSn-cNZbdN-zxXzR-h_gEWLoyi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bipolar Neutrosophic Dombi-Based Heronian Mean Operators and Their Application in Multi-criteria Decision-Making Problems</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Yaacob, Siti Nurhidayah ; Hashim, Hazwani ; Awang, Noor Azzah ; Sulaiman, Nor Hashimah ; Al-Quran, Ashraf ; Abdullah, Lazim</creator><creatorcontrib>Yaacob, Siti Nurhidayah ; Hashim, Hazwani ; Awang, Noor Azzah ; Sulaiman, Nor Hashimah ; Al-Quran, Ashraf ; Abdullah, Lazim</creatorcontrib><description>Dombi operations based on the Dombi t-norm (TN) and t-conorm (TCN) have the advantage in terms of operational parameter flexibility in dealing with varying degrees of uncertainty and aggregation requirements. Meanwhile, Heronian mean (HM) operator is an effective technique for capturing the interrelationship between any number of inputs. Bipolar neutrosophic set (BNS) offers the ability to represent both positive and negative information as well as indeterminate information. It is beneficial in cases where there is uncertainty or insufficient information. However, the existing Dombi operator under BNS do not take into account the interrelationship between input arguments. To overcome this limitation, this study incorporates Dombi operator into HM and propose the bipolar neutrosophic Dombi Heronian mean aggregation operator. This paper introduces two type of aggregation operators namely bipolar neutrosophic Dombi-based generalized weighted Heronian mean (BND-GWHM), and bipolar neutrosophic Dombi-based improved generalized weighted Heronian mean (BND-IGWHM). The proposed operators are integrated into MCDM procedure. The influence of different parameter values on decision-making results is discussed. Finally, a comparison analysis with existing methods is also provided.</description><identifier>ISSN: 1875-6883</identifier><identifier>EISSN: 1875-6883</identifier><identifier>DOI: 10.1007/s44196-024-00544-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Bipolar neutrosophic set ; Computational Intelligence ; Control ; Dombi t-conorm ; Dombi t-norm ; Engineering ; Heronian mean ; Mathematical Logic and Foundations ; Mechatronics ; Multi-criteria decision-making ; Research Article ; Robotics</subject><ispartof>International journal of computational intelligence systems, 2024-07, Vol.17 (1), p.1-22, Article 181</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-3fd266913a9dae055a1cb4e45e626534fd1667db0d8441be262e9e7a265000133</cites><orcidid>0000-0003-4410-6678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yaacob, Siti Nurhidayah</creatorcontrib><creatorcontrib>Hashim, Hazwani</creatorcontrib><creatorcontrib>Awang, Noor Azzah</creatorcontrib><creatorcontrib>Sulaiman, Nor Hashimah</creatorcontrib><creatorcontrib>Al-Quran, Ashraf</creatorcontrib><creatorcontrib>Abdullah, Lazim</creatorcontrib><title>Bipolar Neutrosophic Dombi-Based Heronian Mean Operators and Their Application in Multi-criteria Decision-Making Problems</title><title>International journal of computational intelligence systems</title><addtitle>Int J Comput Intell Syst</addtitle><description>Dombi operations based on the Dombi t-norm (TN) and t-conorm (TCN) have the advantage in terms of operational parameter flexibility in dealing with varying degrees of uncertainty and aggregation requirements. Meanwhile, Heronian mean (HM) operator is an effective technique for capturing the interrelationship between any number of inputs. Bipolar neutrosophic set (BNS) offers the ability to represent both positive and negative information as well as indeterminate information. It is beneficial in cases where there is uncertainty or insufficient information. However, the existing Dombi operator under BNS do not take into account the interrelationship between input arguments. To overcome this limitation, this study incorporates Dombi operator into HM and propose the bipolar neutrosophic Dombi Heronian mean aggregation operator. This paper introduces two type of aggregation operators namely bipolar neutrosophic Dombi-based generalized weighted Heronian mean (BND-GWHM), and bipolar neutrosophic Dombi-based improved generalized weighted Heronian mean (BND-IGWHM). The proposed operators are integrated into MCDM procedure. The influence of different parameter values on decision-making results is discussed. Finally, a comparison analysis with existing methods is also provided.</description><subject>Artificial Intelligence</subject><subject>Bipolar neutrosophic set</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Dombi t-conorm</subject><subject>Dombi t-norm</subject><subject>Engineering</subject><subject>Heronian mean</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Multi-criteria decision-making</subject><subject>Research Article</subject><subject>Robotics</subject><issn>1875-6883</issn><issn>1875-6883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctOHDEQHKFECgJ-ICf_gJP2c2aOPJKABCEHcrZ67J7Fy-x4ZM8e-PsYNkKcuHS3urtKqqqm-SrgmwBovxetRW85SM0BjNZcHjXHomsNt12nPr2bvzRnpWwBQAoNoPVx83wRlzRhZr9pv-ZU0vIYPbtKuyHyCywU2DXlNEec2R3Vcr9QxjXlwnAO7OGRYmbnyzJFj2tMM4v1bz-tkfscV8oR2RX5WOqJ3-FTnDfsT07DRLty2nwecSp09r-fNH9__ni4vOa3979uLs9vuVcCVq7GIK3thcI-IIExKPygSRuy0hqlxyCsbcMAoas2DCStpJ5arMeqUyh10twceEPCrVty3GF-dgmje12kvHGY1-gncjBK8J3ux76aMw4dhqE3oFRLHqUBU7nkgctXq0qm8Y1PgHvJwh2ycDUL95qFkxWkDqBSn-cNZbdN-zxXzR-h_gEWLoyi</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Yaacob, Siti Nurhidayah</creator><creator>Hashim, Hazwani</creator><creator>Awang, Noor Azzah</creator><creator>Sulaiman, Nor Hashimah</creator><creator>Al-Quran, Ashraf</creator><creator>Abdullah, Lazim</creator><general>Springer Netherlands</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4410-6678</orcidid></search><sort><creationdate>20240710</creationdate><title>Bipolar Neutrosophic Dombi-Based Heronian Mean Operators and Their Application in Multi-criteria Decision-Making Problems</title><author>Yaacob, Siti Nurhidayah ; Hashim, Hazwani ; Awang, Noor Azzah ; Sulaiman, Nor Hashimah ; Al-Quran, Ashraf ; Abdullah, Lazim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-3fd266913a9dae055a1cb4e45e626534fd1667db0d8441be262e9e7a265000133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Bipolar neutrosophic set</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Dombi t-conorm</topic><topic>Dombi t-norm</topic><topic>Engineering</topic><topic>Heronian mean</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Multi-criteria decision-making</topic><topic>Research Article</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaacob, Siti Nurhidayah</creatorcontrib><creatorcontrib>Hashim, Hazwani</creatorcontrib><creatorcontrib>Awang, Noor Azzah</creatorcontrib><creatorcontrib>Sulaiman, Nor Hashimah</creatorcontrib><creatorcontrib>Al-Quran, Ashraf</creatorcontrib><creatorcontrib>Abdullah, Lazim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>International journal of computational intelligence systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaacob, Siti Nurhidayah</au><au>Hashim, Hazwani</au><au>Awang, Noor Azzah</au><au>Sulaiman, Nor Hashimah</au><au>Al-Quran, Ashraf</au><au>Abdullah, Lazim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipolar Neutrosophic Dombi-Based Heronian Mean Operators and Their Application in Multi-criteria Decision-Making Problems</atitle><jtitle>International journal of computational intelligence systems</jtitle><stitle>Int J Comput Intell Syst</stitle><date>2024-07-10</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>181</artnum><issn>1875-6883</issn><eissn>1875-6883</eissn><abstract>Dombi operations based on the Dombi t-norm (TN) and t-conorm (TCN) have the advantage in terms of operational parameter flexibility in dealing with varying degrees of uncertainty and aggregation requirements. Meanwhile, Heronian mean (HM) operator is an effective technique for capturing the interrelationship between any number of inputs. Bipolar neutrosophic set (BNS) offers the ability to represent both positive and negative information as well as indeterminate information. It is beneficial in cases where there is uncertainty or insufficient information. However, the existing Dombi operator under BNS do not take into account the interrelationship between input arguments. To overcome this limitation, this study incorporates Dombi operator into HM and propose the bipolar neutrosophic Dombi Heronian mean aggregation operator. This paper introduces two type of aggregation operators namely bipolar neutrosophic Dombi-based generalized weighted Heronian mean (BND-GWHM), and bipolar neutrosophic Dombi-based improved generalized weighted Heronian mean (BND-IGWHM). The proposed operators are integrated into MCDM procedure. The influence of different parameter values on decision-making results is discussed. Finally, a comparison analysis with existing methods is also provided.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s44196-024-00544-2</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4410-6678</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1875-6883 |
ispartof | International journal of computational intelligence systems, 2024-07, Vol.17 (1), p.1-22, Article 181 |
issn | 1875-6883 1875-6883 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0f20c849f9004fb8adb950337eca2505 |
source | Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Artificial Intelligence Bipolar neutrosophic set Computational Intelligence Control Dombi t-conorm Dombi t-norm Engineering Heronian mean Mathematical Logic and Foundations Mechatronics Multi-criteria decision-making Research Article Robotics |
title | Bipolar Neutrosophic Dombi-Based Heronian Mean Operators and Their Application in Multi-criteria Decision-Making Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipolar%20Neutrosophic%20Dombi-Based%20Heronian%20Mean%20Operators%20and%20Their%20Application%20in%20Multi-criteria%20Decision-Making%20Problems&rft.jtitle=International%20journal%20of%20computational%20intelligence%20systems&rft.au=Yaacob,%20Siti%20Nurhidayah&rft.date=2024-07-10&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=181&rft.issn=1875-6883&rft.eissn=1875-6883&rft_id=info:doi/10.1007/s44196-024-00544-2&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_0f20c849f9004fb8adb950337eca2505%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-3fd266913a9dae055a1cb4e45e626534fd1667db0d8441be262e9e7a265000133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |