Loading…

Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann te...

Full description

Saved in:
Bibliographic Details
Main Authors: Ravi Kanth, A.S.V., Deepika
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c342t-7f0261d0946eccbfa1e9b1eac17aefbc0b97089f60c3d170bc6b9d9d9e562c483
container_end_page
container_issue
container_start_page 5004
container_title
container_volume 57
creator Ravi Kanth, A.S.V.
Deepika
description In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.
doi_str_mv 10.1051/matecconf/20165705004
format conference_proceeding
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f247d043d3c4a438e6e461c1a4204db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f247d043d3c4a438e6e461c1a4204db</doaj_id><sourcerecordid>4073849381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-7f0261d0946eccbfa1e9b1eac17aefbc0b97089f60c3d170bc6b9d9d9e562c483</originalsourceid><addsrcrecordid>eNpNUd9LwzAQLqLgmPsThILPdZcfTZpHmVMHYwpT8C2kabJ1tM2WtsL-e1MnY9zD3X13fPcdXxTdI3hEkKJprTqjtWvsFANiKYcUgF5FI4wZSjBh39cX9W00adsdACAiOAg-itarvja-1KqK167qu9I1bWydj2eu-TF66JPn0tq-DVU8P_RqgOJu612_2carMP5w1bFxdTlQ7KuyMXfRjVVVayb_eRx9vcw_Z2_J8v11MXtaJppQ3CXcQtBVgKAsfJBbhYzIkVEacWVsriEPGjNhGWhSIA65ZrkoQpiUYU0zMo4WJ97CqZ3c-7JW_iidKuUf4PxGKt-VujISLKa8AEoKoqmiJDPMUIY0UhQDLfLA9XDi2nt36E3byZ3rfRPkS8QF5hkWjIat9LSlvWtbb-z5KgI52CHPdsgLO8gv_qGBQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1792782964</pqid></control><display><type>conference_proceeding</type><title>Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline</title><source>Publicly Available Content (ProQuest)</source><creator>Ravi Kanth, A.S.V. ; Deepika</creator><contributor>Rani, S. ; Srivastava, T. ; Kakkar, S.</contributor><creatorcontrib>Ravi Kanth, A.S.V. ; Deepika ; Rani, S. ; Srivastava, T. ; Kakkar, S.</creatorcontrib><description>In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/20165705004</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Convection-diffusion equation ; Diffusion ; Polynomials ; Spline functions</subject><ispartof>MATEC web of conferences, 2016, Vol.57, p.5004</ispartof><rights>2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-7f0261d0946eccbfa1e9b1eac17aefbc0b97089f60c3d170bc6b9d9d9e562c483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1792782964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23921,23922,25131,25744,27915,27916,37003,44581</link.rule.ids></links><search><contributor>Rani, S.</contributor><contributor>Srivastava, T.</contributor><contributor>Kakkar, S.</contributor><creatorcontrib>Ravi Kanth, A.S.V.</creatorcontrib><creatorcontrib>Deepika</creatorcontrib><title>Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline</title><title>MATEC web of conferences</title><description>In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.</description><subject>Convection-diffusion equation</subject><subject>Diffusion</subject><subject>Polynomials</subject><subject>Spline functions</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd9LwzAQLqLgmPsThILPdZcfTZpHmVMHYwpT8C2kabJ1tM2WtsL-e1MnY9zD3X13fPcdXxTdI3hEkKJprTqjtWvsFANiKYcUgF5FI4wZSjBh39cX9W00adsdACAiOAg-itarvja-1KqK167qu9I1bWydj2eu-TF66JPn0tq-DVU8P_RqgOJu612_2carMP5w1bFxdTlQ7KuyMXfRjVVVayb_eRx9vcw_Z2_J8v11MXtaJppQ3CXcQtBVgKAsfJBbhYzIkVEacWVsriEPGjNhGWhSIA65ZrkoQpiUYU0zMo4WJ97CqZ3c-7JW_iidKuUf4PxGKt-VujISLKa8AEoKoqmiJDPMUIY0UhQDLfLA9XDi2nt36E3byZ3rfRPkS8QF5hkWjIat9LSlvWtbb-z5KgI52CHPdsgLO8gv_qGBQA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ravi Kanth, A.S.V.</creator><creator>Deepika</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline</title><author>Ravi Kanth, A.S.V. ; Deepika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-7f0261d0946eccbfa1e9b1eac17aefbc0b97089f60c3d170bc6b9d9d9e562c483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convection-diffusion equation</topic><topic>Diffusion</topic><topic>Polynomials</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi Kanth, A.S.V.</creatorcontrib><creatorcontrib>Deepika</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi Kanth, A.S.V.</au><au>Deepika</au><au>Rani, S.</au><au>Srivastava, T.</au><au>Kakkar, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline</atitle><btitle>MATEC web of conferences</btitle><date>2016-01-01</date><risdate>2016</risdate><volume>57</volume><spage>5004</spage><pages>5004-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/20165705004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC web of conferences, 2016, Vol.57, p.5004
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0f247d043d3c4a438e6e461c1a4204db
source Publicly Available Content (ProQuest)
subjects Convection-diffusion equation
Diffusion
Polynomials
Spline functions
title Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20Solutions%20for%20Convection-Diffusion%20Equation%20through%20Non-Polynomial%20Spline&rft.btitle=MATEC%20web%20of%20conferences&rft.au=Ravi%20Kanth,%20A.S.V.&rft.date=2016-01-01&rft.volume=57&rft.spage=5004&rft.pages=5004-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/20165705004&rft_dat=%3Cproquest_doaj_%3E4073849381%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-7f0261d0946eccbfa1e9b1eac17aefbc0b97089f60c3d170bc6b9d9d9e562c483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1792782964&rft_id=info:pmid/&rfr_iscdi=true