Loading…
ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4
Heat shock transcription factors (HSFs) play critical roles in several types of environmental stresses. However, the detailed regulatory mechanisms in response to salt stress are still largely unknown. In this study, we examined the salt-induced transcriptional responses of ThHSFA1-ThWRKY4 in Tamari...
Saved in:
Published in: | International journal of molecular sciences 2021-05, Vol.22 (9), p.5048 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-9cd0706f6ecba55279bf88793e4ec418b5fba3fd04e2c39de15bb9981f4893383 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-9cd0706f6ecba55279bf88793e4ec418b5fba3fd04e2c39de15bb9981f4893383 |
container_end_page | |
container_issue | 9 |
container_start_page | 5048 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Sun, Ting-Ting Wang, Chao Liu, Rui Zhang, Yu Wang, Yu-Cheng Wang, Liu-Qiang |
description | Heat shock transcription factors (HSFs) play critical roles in several types of environmental stresses. However, the detailed regulatory mechanisms in response to salt stress are still largely unknown. In this study, we examined the salt-induced transcriptional responses of ThHSFA1-ThWRKY4 in Tamarix hispida and their functions and regulatory mechanisms in salt tolerance. ThHSFA1 protein acts as an upstream regulator that can directly activate ThWRKY4 expression by binding to the heat shock element (HSE) of the ThWRKY4 promoter using yeast one-hybrid (Y1H), chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays. ThHSFA1 and ThWRKY4 expression was significantly induced by salt stress and abscisic acid (ABA) treatment in the roots and leaves of T. hispida. ThHSFA1 is a nuclear-localized protein with transactivation activity at the C-terminus. Compared to nontransgenic plants, transgenic plants overexpressing ThHSFA1 displayed enhanced salt tolerance and exhibited reduced reactive oxygen species (ROS) levels and increased antioxidant enzyme activity levels under salt stress. Therefore, we further concluded that ThHSFA1 mediated the regulation of ThWRKY4 in response to salt stress in T. hispida. |
doi_str_mv | 10.3390/ijms22095048 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f27ece554504e1f931490fadd571476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f27ece554504e1f931490fadd571476</doaj_id><sourcerecordid>2528260784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-9cd0706f6ecba55279bf88793e4ec418b5fba3fd04e2c39de15bb9981f4893383</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi0EoiVw4wdY4sKBgD937QtSFSitKKrUBCFOltc73jja2MHejciB_862qVDLaazxM49Grwah15S851yTD2GzLYwRLYlQT9ApFYzNCanqpw_eJ-hFKRtCGGdSP0cnXJBK1RU_RX9W64vl-RnFixQ95IKXth_wcshQCl6lHrKNDvCwzmns1vhbasfeDiFFnDy-AeuGsAd8_fvQQcTLHbgAk8PZPcQuxA43B_wpZHBDf5jw7m54aq_WP26-_hQv0TNv-wKv7usMfT__vFpczK-uv1wuzq7mTkg5zLVrSU0qX4FrrJSs1o1XqtYcBDhBVSN9Y7lviQDmuG6ByqbRWlEvlOZc8Rm6PHrbZDdml8PW5oNJNpi7RsqdsXkIrgdDPKvBgZRiChSo15wKTbxtW1lTMWU2Qx-Prt3YbKF1EIds-0fSxz8xrE2X9kZRVjEmJ8Hbe0FOv0Yog9mG4qDvbYQ0FjMhlVCMi9u93_yHbtKY4xTVRDHFKlIrMVHvjpTLqZQM_t8ylJjbGzEPb4T_BbNprm0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528260784</pqid></control><display><type>article</type><title>ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sun, Ting-Ting ; Wang, Chao ; Liu, Rui ; Zhang, Yu ; Wang, Yu-Cheng ; Wang, Liu-Qiang</creator><creatorcontrib>Sun, Ting-Ting ; Wang, Chao ; Liu, Rui ; Zhang, Yu ; Wang, Yu-Cheng ; Wang, Liu-Qiang</creatorcontrib><description>Heat shock transcription factors (HSFs) play critical roles in several types of environmental stresses. However, the detailed regulatory mechanisms in response to salt stress are still largely unknown. In this study, we examined the salt-induced transcriptional responses of ThHSFA1-ThWRKY4 in Tamarix hispida and their functions and regulatory mechanisms in salt tolerance. ThHSFA1 protein acts as an upstream regulator that can directly activate ThWRKY4 expression by binding to the heat shock element (HSE) of the ThWRKY4 promoter using yeast one-hybrid (Y1H), chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays. ThHSFA1 and ThWRKY4 expression was significantly induced by salt stress and abscisic acid (ABA) treatment in the roots and leaves of T. hispida. ThHSFA1 is a nuclear-localized protein with transactivation activity at the C-terminus. Compared to nontransgenic plants, transgenic plants overexpressing ThHSFA1 displayed enhanced salt tolerance and exhibited reduced reactive oxygen species (ROS) levels and increased antioxidant enzyme activity levels under salt stress. Therefore, we further concluded that ThHSFA1 mediated the regulation of ThWRKY4 in response to salt stress in T. hispida.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22095048</identifier><identifier>PMID: 34068763</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Abiotic stress ; Abscisic acid ; antioxidant enzyme ; Antioxidants ; C-Terminus ; Chromatin ; Cloning ; Environmental impact ; Enzymatic activity ; Enzyme activity ; Enzymes ; Gene expression ; Heat shock ; heat shock element ; heat shock transcription factor ; Homeostasis ; Immunoprecipitation ; Localization ; Physiology ; Proteins ; Reactive oxygen species ; ROS ; Salinity ; Salinity tolerance ; salt stress ; Scavenging ; Tamarix hispida ; Tobacco ; Transcription factors ; Transgenic plants ; Yeast</subject><ispartof>International journal of molecular sciences, 2021-05, Vol.22 (9), p.5048</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-9cd0706f6ecba55279bf88793e4ec418b5fba3fd04e2c39de15bb9981f4893383</citedby><cites>FETCH-LOGICAL-c455t-9cd0706f6ecba55279bf88793e4ec418b5fba3fd04e2c39de15bb9981f4893383</cites><orcidid>0000-0003-2157-1729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2528260784/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2528260784?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Sun, Ting-Ting</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wang, Yu-Cheng</creatorcontrib><creatorcontrib>Wang, Liu-Qiang</creatorcontrib><title>ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4</title><title>International journal of molecular sciences</title><description>Heat shock transcription factors (HSFs) play critical roles in several types of environmental stresses. However, the detailed regulatory mechanisms in response to salt stress are still largely unknown. In this study, we examined the salt-induced transcriptional responses of ThHSFA1-ThWRKY4 in Tamarix hispida and their functions and regulatory mechanisms in salt tolerance. ThHSFA1 protein acts as an upstream regulator that can directly activate ThWRKY4 expression by binding to the heat shock element (HSE) of the ThWRKY4 promoter using yeast one-hybrid (Y1H), chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays. ThHSFA1 and ThWRKY4 expression was significantly induced by salt stress and abscisic acid (ABA) treatment in the roots and leaves of T. hispida. ThHSFA1 is a nuclear-localized protein with transactivation activity at the C-terminus. Compared to nontransgenic plants, transgenic plants overexpressing ThHSFA1 displayed enhanced salt tolerance and exhibited reduced reactive oxygen species (ROS) levels and increased antioxidant enzyme activity levels under salt stress. Therefore, we further concluded that ThHSFA1 mediated the regulation of ThWRKY4 in response to salt stress in T. hispida.</description><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>antioxidant enzyme</subject><subject>Antioxidants</subject><subject>C-Terminus</subject><subject>Chromatin</subject><subject>Cloning</subject><subject>Environmental impact</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Heat shock</subject><subject>heat shock element</subject><subject>heat shock transcription factor</subject><subject>Homeostasis</subject><subject>Immunoprecipitation</subject><subject>Localization</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>ROS</subject><subject>Salinity</subject><subject>Salinity tolerance</subject><subject>salt stress</subject><subject>Scavenging</subject><subject>Tamarix hispida</subject><subject>Tobacco</subject><subject>Transcription factors</subject><subject>Transgenic plants</subject><subject>Yeast</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhi0EoiVw4wdY4sKBgD937QtSFSitKKrUBCFOltc73jja2MHejciB_862qVDLaazxM49Grwah15S851yTD2GzLYwRLYlQT9ApFYzNCanqpw_eJ-hFKRtCGGdSP0cnXJBK1RU_RX9W64vl-RnFixQ95IKXth_wcshQCl6lHrKNDvCwzmns1vhbasfeDiFFnDy-AeuGsAd8_fvQQcTLHbgAk8PZPcQuxA43B_wpZHBDf5jw7m54aq_WP26-_hQv0TNv-wKv7usMfT__vFpczK-uv1wuzq7mTkg5zLVrSU0qX4FrrJSs1o1XqtYcBDhBVSN9Y7lviQDmuG6ByqbRWlEvlOZc8Rm6PHrbZDdml8PW5oNJNpi7RsqdsXkIrgdDPKvBgZRiChSo15wKTbxtW1lTMWU2Qx-Prt3YbKF1EIds-0fSxz8xrE2X9kZRVjEmJ8Hbe0FOv0Yog9mG4qDvbYQ0FjMhlVCMi9u93_yHbtKY4xTVRDHFKlIrMVHvjpTLqZQM_t8ylJjbGzEPb4T_BbNprm0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sun, Ting-Ting</creator><creator>Wang, Chao</creator><creator>Liu, Rui</creator><creator>Zhang, Yu</creator><creator>Wang, Yu-Cheng</creator><creator>Wang, Liu-Qiang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2157-1729</orcidid></search><sort><creationdate>20210501</creationdate><title>ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4</title><author>Sun, Ting-Ting ; Wang, Chao ; Liu, Rui ; Zhang, Yu ; Wang, Yu-Cheng ; Wang, Liu-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-9cd0706f6ecba55279bf88793e4ec418b5fba3fd04e2c39de15bb9981f4893383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>antioxidant enzyme</topic><topic>Antioxidants</topic><topic>C-Terminus</topic><topic>Chromatin</topic><topic>Cloning</topic><topic>Environmental impact</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Heat shock</topic><topic>heat shock element</topic><topic>heat shock transcription factor</topic><topic>Homeostasis</topic><topic>Immunoprecipitation</topic><topic>Localization</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>ROS</topic><topic>Salinity</topic><topic>Salinity tolerance</topic><topic>salt stress</topic><topic>Scavenging</topic><topic>Tamarix hispida</topic><topic>Tobacco</topic><topic>Transcription factors</topic><topic>Transgenic plants</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ting-Ting</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wang, Yu-Cheng</creatorcontrib><creatorcontrib>Wang, Liu-Qiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ting-Ting</au><au>Wang, Chao</au><au>Liu, Rui</au><au>Zhang, Yu</au><au>Wang, Yu-Cheng</au><au>Wang, Liu-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>22</volume><issue>9</issue><spage>5048</spage><pages>5048-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Heat shock transcription factors (HSFs) play critical roles in several types of environmental stresses. However, the detailed regulatory mechanisms in response to salt stress are still largely unknown. In this study, we examined the salt-induced transcriptional responses of ThHSFA1-ThWRKY4 in Tamarix hispida and their functions and regulatory mechanisms in salt tolerance. ThHSFA1 protein acts as an upstream regulator that can directly activate ThWRKY4 expression by binding to the heat shock element (HSE) of the ThWRKY4 promoter using yeast one-hybrid (Y1H), chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays. ThHSFA1 and ThWRKY4 expression was significantly induced by salt stress and abscisic acid (ABA) treatment in the roots and leaves of T. hispida. ThHSFA1 is a nuclear-localized protein with transactivation activity at the C-terminus. Compared to nontransgenic plants, transgenic plants overexpressing ThHSFA1 displayed enhanced salt tolerance and exhibited reduced reactive oxygen species (ROS) levels and increased antioxidant enzyme activity levels under salt stress. Therefore, we further concluded that ThHSFA1 mediated the regulation of ThWRKY4 in response to salt stress in T. hispida.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34068763</pmid><doi>10.3390/ijms22095048</doi><orcidid>https://orcid.org/0000-0003-2157-1729</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-05, Vol.22 (9), p.5048 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0f27ece554504e1f931490fadd571476 |
source | Publicly Available Content Database; PubMed Central |
subjects | Abiotic stress Abscisic acid antioxidant enzyme Antioxidants C-Terminus Chromatin Cloning Environmental impact Enzymatic activity Enzyme activity Enzymes Gene expression Heat shock heat shock element heat shock transcription factor Homeostasis Immunoprecipitation Localization Physiology Proteins Reactive oxygen species ROS Salinity Salinity tolerance salt stress Scavenging Tamarix hispida Tobacco Transcription factors Transgenic plants Yeast |
title | ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ThHSFA1%20Confers%20Salt%20Stress%20Tolerance%20through%20Modulation%20of%20Reactive%20Oxygen%20Species%20Scavenging%20by%20Directly%20Regulating%20ThWRKY4&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Sun,%20Ting-Ting&rft.date=2021-05-01&rft.volume=22&rft.issue=9&rft.spage=5048&rft.pages=5048-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22095048&rft_dat=%3Cproquest_doaj_%3E2528260784%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-9cd0706f6ecba55279bf88793e4ec418b5fba3fd04e2c39de15bb9981f4893383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528260784&rft_id=info:pmid/34068763&rfr_iscdi=true |