Loading…
Understanding the Role of Soft X-ray in Charging Solid-Film and Cellular Electrets
Solid-film electrets and cellular electrets are defined as promising insulating dielectric materials containing permanent electrostatic and polarizations. High-performance charging methods are critical for electret transducers. Unlike dielectric barrier discharge (DBD) charging, the soft X-ray charg...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-11, Vol.12 (23), p.4143 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solid-film electrets and cellular electrets are defined as promising insulating dielectric materials containing permanent electrostatic and polarizations. High-performance charging methods are critical for electret transducers. Unlike dielectric barrier discharge (DBD) charging, the soft X-ray charging method, with its strong penetration ability, has been widely used in electrets after packaging and has even been embedded in high-aspect-ratio structures (HARSs). However, the related charging model and the charging effect of the soft X-ray irradiation remain unclear. In this study, the charge carrier migration theory and the one-dimensional electrostatic model were employed to build the soft X-ray charging models. The influence of soft X-ray irradiation under deferent poling voltages was investigated theoretically and experimentally. The conducted space charge measurement based on a pulsed electro-acoustic (PEA) system with a soft X-ray generator revealed that soft X-ray charging can offer higher surface charge densities and piezoelectricity to cellular electrets under the critical poling voltage lower than twice the breakdown voltage. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12234143 |