Loading…
IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution
Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR)...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.25 (1), p.24 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33 |
container_end_page | |
container_issue | 1 |
container_start_page | 24 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 25 |
creator | Tragakis, Athanasios Kaul, Chaitanya Mitchell, Kevin J Dai, Hang Murray-Smith, Roderick Faccio, Daniele |
description | Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub. |
doi_str_mv | 10.3390/s25010024 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f2dc63e8002453c9352771ab8b9450a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823523236</galeid><doaj_id>oai_doaj_org_article_0f2dc63e8002453c9352771ab8b9450a</doaj_id><sourcerecordid>A823523236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33</originalsourceid><addsrcrecordid>eNpdkktv1DAURi0EoqWw4A-gSGxgkdb29ZNNNWqZ6UiVKvFYW45jTzPKxIOdIPHvcZgytKyuH0fH_q6N0FuCzwE0vsiUY4IxZc_QKWGU1YpS_PzR-AS9ynlbCABQL9EJaKmFInCKrterxfJTtR5c8js_jLavVlPX-rZajGOZd3GollOeS4ipuvb78b76Ou19qr_4HPtpJl6jF8H22b95qGfo-_Lzt6ub-vZutb5a3NaOCiVr7wJjMjAbGkqd5pi1oIJslJO24VYx1wjhFVFKOMm5Vi1vOSWaOaucaADO0PrgbaPdmn3qdjb9MtF25s9CTBtj09i53hscaOsEeDW3hYPTwKmUxDaq0YxjW1yXB9d-ana-dSVrsv0T6dOdobs3m_jTECIpYCKL4cODIcUfk8-j2XXZ-b63g49TNkA4Y1iAoAV9_x-6jVMaSq9mCoQmXME_amNLgm4IsRzsZqlZKFoCAAVRqI8HyqWYc_LheGeCzfwdzPE7FPbd45BH8u_7w2__uqv-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153691583</pqid></control><display><type>article</type><title>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Tragakis, Athanasios ; Kaul, Chaitanya ; Mitchell, Kevin J ; Dai, Hang ; Murray-Smith, Roderick ; Faccio, Daniele</creator><creatorcontrib>Tragakis, Athanasios ; Kaul, Chaitanya ; Mitchell, Kevin J ; Dai, Hang ; Murray-Smith, Roderick ; Faccio, Daniele</creatorcontrib><description>Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s25010024</identifier><identifier>PMID: 39796813</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>convolutional neural networks ; Data processing ; deep learning ; depth super-resolution ; Medical imaging equipment ; multimodal sensor fusion ; Optimization ; Robotics ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.24</ispartof><rights>COPYRIGHT 2025 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33</cites><orcidid>0009-0005-3433-7167 ; 0000-0001-8397-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3153691583/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3153691583?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39796813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tragakis, Athanasios</creatorcontrib><creatorcontrib>Kaul, Chaitanya</creatorcontrib><creatorcontrib>Mitchell, Kevin J</creatorcontrib><creatorcontrib>Dai, Hang</creatorcontrib><creatorcontrib>Murray-Smith, Roderick</creatorcontrib><creatorcontrib>Faccio, Daniele</creatorcontrib><title>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub.</description><subject>convolutional neural networks</subject><subject>Data processing</subject><subject>deep learning</subject><subject>depth super-resolution</subject><subject>Medical imaging equipment</subject><subject>multimodal sensor fusion</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAURi0EoqWw4A-gSGxgkdb29ZNNNWqZ6UiVKvFYW45jTzPKxIOdIPHvcZgytKyuH0fH_q6N0FuCzwE0vsiUY4IxZc_QKWGU1YpS_PzR-AS9ynlbCABQL9EJaKmFInCKrterxfJTtR5c8js_jLavVlPX-rZajGOZd3GollOeS4ipuvb78b76Ou19qr_4HPtpJl6jF8H22b95qGfo-_Lzt6ub-vZutb5a3NaOCiVr7wJjMjAbGkqd5pi1oIJslJO24VYx1wjhFVFKOMm5Vi1vOSWaOaucaADO0PrgbaPdmn3qdjb9MtF25s9CTBtj09i53hscaOsEeDW3hYPTwKmUxDaq0YxjW1yXB9d-ana-dSVrsv0T6dOdobs3m_jTECIpYCKL4cODIcUfk8-j2XXZ-b63g49TNkA4Y1iAoAV9_x-6jVMaSq9mCoQmXME_amNLgm4IsRzsZqlZKFoCAAVRqI8HyqWYc_LheGeCzfwdzPE7FPbd45BH8u_7w2__uqv-</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Tragakis, Athanasios</creator><creator>Kaul, Chaitanya</creator><creator>Mitchell, Kevin J</creator><creator>Dai, Hang</creator><creator>Murray-Smith, Roderick</creator><creator>Faccio, Daniele</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-3433-7167</orcidid><orcidid>https://orcid.org/0000-0001-8397-334X</orcidid></search><sort><creationdate>20241224</creationdate><title>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</title><author>Tragakis, Athanasios ; Kaul, Chaitanya ; Mitchell, Kevin J ; Dai, Hang ; Murray-Smith, Roderick ; Faccio, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>convolutional neural networks</topic><topic>Data processing</topic><topic>deep learning</topic><topic>depth super-resolution</topic><topic>Medical imaging equipment</topic><topic>multimodal sensor fusion</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tragakis, Athanasios</creatorcontrib><creatorcontrib>Kaul, Chaitanya</creatorcontrib><creatorcontrib>Mitchell, Kevin J</creatorcontrib><creatorcontrib>Dai, Hang</creatorcontrib><creatorcontrib>Murray-Smith, Roderick</creatorcontrib><creatorcontrib>Faccio, Daniele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tragakis, Athanasios</au><au>Kaul, Chaitanya</au><au>Mitchell, Kevin J</au><au>Dai, Hang</au><au>Murray-Smith, Roderick</au><au>Faccio, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>24</spage><pages>24-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39796813</pmid><doi>10.3390/s25010024</doi><orcidid>https://orcid.org/0009-0005-3433-7167</orcidid><orcidid>https://orcid.org/0000-0001-8397-334X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.24 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0f2dc63e8002453c9352771ab8b9450a |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | convolutional neural networks Data processing deep learning depth super-resolution Medical imaging equipment multimodal sensor fusion Optimization Robotics Sensors |
title | IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IGAF:%20Incremental%20Guided%20Attention%20Fusion%20for%20Depth%20Super-Resolution&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Tragakis,%20Athanasios&rft.date=2024-12-24&rft.volume=25&rft.issue=1&rft.spage=24&rft.pages=24-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s25010024&rft_dat=%3Cgale_doaj_%3EA823523236%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153691583&rft_id=info:pmid/39796813&rft_galeid=A823523236&rfr_iscdi=true |