Loading…

IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution

Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR)...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.25 (1), p.24
Main Authors: Tragakis, Athanasios, Kaul, Chaitanya, Mitchell, Kevin J, Dai, Hang, Murray-Smith, Roderick, Faccio, Daniele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33
container_end_page
container_issue 1
container_start_page 24
container_title Sensors (Basel, Switzerland)
container_volume 25
creator Tragakis, Athanasios
Kaul, Chaitanya
Mitchell, Kevin J
Dai, Hang
Murray-Smith, Roderick
Faccio, Daniele
description Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub.
doi_str_mv 10.3390/s25010024
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f2dc63e8002453c9352771ab8b9450a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823523236</galeid><doaj_id>oai_doaj_org_article_0f2dc63e8002453c9352771ab8b9450a</doaj_id><sourcerecordid>A823523236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33</originalsourceid><addsrcrecordid>eNpdkktv1DAURi0EoqWw4A-gSGxgkdb29ZNNNWqZ6UiVKvFYW45jTzPKxIOdIPHvcZgytKyuH0fH_q6N0FuCzwE0vsiUY4IxZc_QKWGU1YpS_PzR-AS9ynlbCABQL9EJaKmFInCKrterxfJTtR5c8js_jLavVlPX-rZajGOZd3GollOeS4ipuvb78b76Ou19qr_4HPtpJl6jF8H22b95qGfo-_Lzt6ub-vZutb5a3NaOCiVr7wJjMjAbGkqd5pi1oIJslJO24VYx1wjhFVFKOMm5Vi1vOSWaOaucaADO0PrgbaPdmn3qdjb9MtF25s9CTBtj09i53hscaOsEeDW3hYPTwKmUxDaq0YxjW1yXB9d-ana-dSVrsv0T6dOdobs3m_jTECIpYCKL4cODIcUfk8-j2XXZ-b63g49TNkA4Y1iAoAV9_x-6jVMaSq9mCoQmXME_amNLgm4IsRzsZqlZKFoCAAVRqI8HyqWYc_LheGeCzfwdzPE7FPbd45BH8u_7w2__uqv-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153691583</pqid></control><display><type>article</type><title>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Tragakis, Athanasios ; Kaul, Chaitanya ; Mitchell, Kevin J ; Dai, Hang ; Murray-Smith, Roderick ; Faccio, Daniele</creator><creatorcontrib>Tragakis, Athanasios ; Kaul, Chaitanya ; Mitchell, Kevin J ; Dai, Hang ; Murray-Smith, Roderick ; Faccio, Daniele</creatorcontrib><description>Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s25010024</identifier><identifier>PMID: 39796813</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>convolutional neural networks ; Data processing ; deep learning ; depth super-resolution ; Medical imaging equipment ; multimodal sensor fusion ; Optimization ; Robotics ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.24</ispartof><rights>COPYRIGHT 2025 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33</cites><orcidid>0009-0005-3433-7167 ; 0000-0001-8397-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3153691583/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3153691583?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39796813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tragakis, Athanasios</creatorcontrib><creatorcontrib>Kaul, Chaitanya</creatorcontrib><creatorcontrib>Mitchell, Kevin J</creatorcontrib><creatorcontrib>Dai, Hang</creatorcontrib><creatorcontrib>Murray-Smith, Roderick</creatorcontrib><creatorcontrib>Faccio, Daniele</creatorcontrib><title>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub.</description><subject>convolutional neural networks</subject><subject>Data processing</subject><subject>deep learning</subject><subject>depth super-resolution</subject><subject>Medical imaging equipment</subject><subject>multimodal sensor fusion</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAURi0EoqWw4A-gSGxgkdb29ZNNNWqZ6UiVKvFYW45jTzPKxIOdIPHvcZgytKyuH0fH_q6N0FuCzwE0vsiUY4IxZc_QKWGU1YpS_PzR-AS9ynlbCABQL9EJaKmFInCKrterxfJTtR5c8js_jLavVlPX-rZajGOZd3GollOeS4ipuvb78b76Ou19qr_4HPtpJl6jF8H22b95qGfo-_Lzt6ub-vZutb5a3NaOCiVr7wJjMjAbGkqd5pi1oIJslJO24VYx1wjhFVFKOMm5Vi1vOSWaOaucaADO0PrgbaPdmn3qdjb9MtF25s9CTBtj09i53hscaOsEeDW3hYPTwKmUxDaq0YxjW1yXB9d-ana-dSVrsv0T6dOdobs3m_jTECIpYCKL4cODIcUfk8-j2XXZ-b63g49TNkA4Y1iAoAV9_x-6jVMaSq9mCoQmXME_amNLgm4IsRzsZqlZKFoCAAVRqI8HyqWYc_LheGeCzfwdzPE7FPbd45BH8u_7w2__uqv-</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Tragakis, Athanasios</creator><creator>Kaul, Chaitanya</creator><creator>Mitchell, Kevin J</creator><creator>Dai, Hang</creator><creator>Murray-Smith, Roderick</creator><creator>Faccio, Daniele</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-3433-7167</orcidid><orcidid>https://orcid.org/0000-0001-8397-334X</orcidid></search><sort><creationdate>20241224</creationdate><title>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</title><author>Tragakis, Athanasios ; Kaul, Chaitanya ; Mitchell, Kevin J ; Dai, Hang ; Murray-Smith, Roderick ; Faccio, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>convolutional neural networks</topic><topic>Data processing</topic><topic>deep learning</topic><topic>depth super-resolution</topic><topic>Medical imaging equipment</topic><topic>multimodal sensor fusion</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tragakis, Athanasios</creatorcontrib><creatorcontrib>Kaul, Chaitanya</creatorcontrib><creatorcontrib>Mitchell, Kevin J</creatorcontrib><creatorcontrib>Dai, Hang</creatorcontrib><creatorcontrib>Murray-Smith, Roderick</creatorcontrib><creatorcontrib>Faccio, Daniele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tragakis, Athanasios</au><au>Kaul, Chaitanya</au><au>Mitchell, Kevin J</au><au>Dai, Hang</au><au>Murray-Smith, Roderick</au><au>Faccio, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>24</spage><pages>24-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Accurate depth estimation is crucial for many fields, including robotics, navigation, and medical imaging. However, conventional depth sensors often produce low-resolution (LR) depth maps, making detailed scene perception challenging. To address this, enhancing LR depth maps to high-resolution (HR) ones has become essential, guided by HR-structured inputs like RGB or grayscale images. We propose a novel sensor fusion methodology for guided depth super-resolution (GDSR), a technique that combines LR depth maps with HR images to estimate detailed HR depth maps. Our key contribution is the Incremental guided attention fusion (IGAF) module, which effectively learns to fuse features from RGB images and LR depth maps, producing accurate HR depth maps. Using IGAF, we build a robust super-resolution model and evaluate it on multiple benchmark datasets. Our model achieves state-of-the-art results compared to all baseline models on the NYU v2 dataset for ×4, ×8, and ×16 upsampling. It also outperforms all baselines in a zero-shot setting on the Middlebury, Lu, and RGB-D-D datasets. Code, environments, and models are available on GitHub.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39796813</pmid><doi>10.3390/s25010024</doi><orcidid>https://orcid.org/0009-0005-3433-7167</orcidid><orcidid>https://orcid.org/0000-0001-8397-334X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.24
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0f2dc63e8002453c9352771ab8b9450a
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects convolutional neural networks
Data processing
deep learning
depth super-resolution
Medical imaging equipment
multimodal sensor fusion
Optimization
Robotics
Sensors
title IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IGAF:%20Incremental%20Guided%20Attention%20Fusion%20for%20Depth%20Super-Resolution&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Tragakis,%20Athanasios&rft.date=2024-12-24&rft.volume=25&rft.issue=1&rft.spage=24&rft.pages=24-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s25010024&rft_dat=%3Cgale_doaj_%3EA823523236%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2687-ecf447f4afb22c9504d38f7b8c7ab5a84cb66e81886c75598d5d52194ca8c6b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153691583&rft_id=info:pmid/39796813&rft_galeid=A823523236&rfr_iscdi=true