Loading…
Second Zagreb and Sigma Indices of Semi and Total Transformations of Graphs
The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in particular, bond-based indices play a vital role...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-e7a6bb387b5677f16ed97b8ec7518eafb09b7f8ea2d71c613edaabe014e092af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-e7a6bb387b5677f16ed97b8ec7518eafb09b7f8ea2d71c613edaabe014e092af3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Complexity (New York, N.Y.) |
container_volume | 2021 |
creator | Yang, Zhen Arockiaraj, Micheal Prabhu, Savari Arulperumjothi, M. Liu, Jia-Bao |
description | The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in particular, bond-based indices play a vital role. The bond-additive topological indices of a molecular graph are defined as a sum of edge measures over all edges in which edge measures can be computed based on degrees, closeness, peripherality, and irregularity. In this study, we provide the mathematical characterization of the transformation of a structure that can be accomplished by the novel edge adjacency and incidence relations. We derive the exact expressions of bond type indices such as second Zagreb, sigma indices, and their coindices of total transformation and two types of semitransformations of the molecules which in turn can be used to characterize the topochemical and topostructural properties. |
doi_str_mv | 10.1155/2021/6828424 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f35f1635aab439fa5d1f91f810fbc76</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f35f1635aab439fa5d1f91f810fbc76</doaj_id><sourcerecordid>2574089661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e7a6bb387b5677f16ed97b8ec7518eafb09b7f8ea2d71c613edaabe014e092af3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs3f8CCR12bZDfJ5ihFa7HgofXiJUw2SZvSbmqyRfz3brvFo6d5zHy8eTyEbgl-JISxEcWUjHhFq5KWZ2hAsJQ5ZpSfH7TgORWVuERXKa0xxpIXYoDe5rYOjck-YRmtzqCTc7_cQjZtjK9tyoLL5nbrj5dFaGGTLSI0yYW4hdaH5khMIuxW6RpdONgke3OaQ_Tx8rwYv-az98l0_DTL6xIXbW4FcK2LSmjGhXCEWyOFrmwtGKksOI2lFq5T1AhSc1JYA6AtJqXFkoIrhmja-5oAa7WLfgvxRwXw6rgIcakgtr7eWIVdwboPBescykI6YIY4SVxFsNO14J3XXe-1i-Frb1Or1mEfmy6-okyUuJK8SzBEDz1Vx5BStO7vK8HqUL06VK9O1Xf4fY-vfGPg2_9P_wJpiII9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574089661</pqid></control><display><type>article</type><title>Second Zagreb and Sigma Indices of Semi and Total Transformations of Graphs</title><source>Wiley Online Library Open Access</source><creator>Yang, Zhen ; Arockiaraj, Micheal ; Prabhu, Savari ; Arulperumjothi, M. ; Liu, Jia-Bao</creator><contributor>Kwon, Oh-Min ; Oh-Min Kwon</contributor><creatorcontrib>Yang, Zhen ; Arockiaraj, Micheal ; Prabhu, Savari ; Arulperumjothi, M. ; Liu, Jia-Bao ; Kwon, Oh-Min ; Oh-Min Kwon</creatorcontrib><description>The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in particular, bond-based indices play a vital role. The bond-additive topological indices of a molecular graph are defined as a sum of edge measures over all edges in which edge measures can be computed based on degrees, closeness, peripherality, and irregularity. In this study, we provide the mathematical characterization of the transformation of a structure that can be accomplished by the novel edge adjacency and incidence relations. We derive the exact expressions of bond type indices such as second Zagreb, sigma indices, and their coindices of total transformation and two types of semitransformations of the molecules which in turn can be used to characterize the topochemical and topostructural properties.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/6828424</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Connectivity ; Graph theory ; Graphs ; Topology ; Transformations</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Zhen Yang et al.</rights><rights>Copyright © 2021 Zhen Yang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e7a6bb387b5677f16ed97b8ec7518eafb09b7f8ea2d71c613edaabe014e092af3</citedby><cites>FETCH-LOGICAL-c403t-e7a6bb387b5677f16ed97b8ec7518eafb09b7f8ea2d71c613edaabe014e092af3</cites><orcidid>0000-0002-4457-1046 ; 0000-0001-9389-6536 ; 0000-0002-1922-910X ; 0000-0001-8557-1643 ; 0000-0002-9620-7692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Kwon, Oh-Min</contributor><contributor>Oh-Min Kwon</contributor><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Arockiaraj, Micheal</creatorcontrib><creatorcontrib>Prabhu, Savari</creatorcontrib><creatorcontrib>Arulperumjothi, M.</creatorcontrib><creatorcontrib>Liu, Jia-Bao</creatorcontrib><title>Second Zagreb and Sigma Indices of Semi and Total Transformations of Graphs</title><title>Complexity (New York, N.Y.)</title><description>The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in particular, bond-based indices play a vital role. The bond-additive topological indices of a molecular graph are defined as a sum of edge measures over all edges in which edge measures can be computed based on degrees, closeness, peripherality, and irregularity. In this study, we provide the mathematical characterization of the transformation of a structure that can be accomplished by the novel edge adjacency and incidence relations. We derive the exact expressions of bond type indices such as second Zagreb, sigma indices, and their coindices of total transformation and two types of semitransformations of the molecules which in turn can be used to characterize the topochemical and topostructural properties.</description><subject>Connectivity</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Topology</subject><subject>Transformations</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kEFLAzEQhYMoWKs3f8CCR12bZDfJ5ihFa7HgofXiJUw2SZvSbmqyRfz3brvFo6d5zHy8eTyEbgl-JISxEcWUjHhFq5KWZ2hAsJQ5ZpSfH7TgORWVuERXKa0xxpIXYoDe5rYOjck-YRmtzqCTc7_cQjZtjK9tyoLL5nbrj5dFaGGTLSI0yYW4hdaH5khMIuxW6RpdONgke3OaQ_Tx8rwYv-az98l0_DTL6xIXbW4FcK2LSmjGhXCEWyOFrmwtGKksOI2lFq5T1AhSc1JYA6AtJqXFkoIrhmja-5oAa7WLfgvxRwXw6rgIcakgtr7eWIVdwboPBescykI6YIY4SVxFsNO14J3XXe-1i-Frb1Or1mEfmy6-okyUuJK8SzBEDz1Vx5BStO7vK8HqUL06VK9O1Xf4fY-vfGPg2_9P_wJpiII9</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yang, Zhen</creator><creator>Arockiaraj, Micheal</creator><creator>Prabhu, Savari</creator><creator>Arulperumjothi, M.</creator><creator>Liu, Jia-Bao</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4457-1046</orcidid><orcidid>https://orcid.org/0000-0001-9389-6536</orcidid><orcidid>https://orcid.org/0000-0002-1922-910X</orcidid><orcidid>https://orcid.org/0000-0001-8557-1643</orcidid><orcidid>https://orcid.org/0000-0002-9620-7692</orcidid></search><sort><creationdate>2021</creationdate><title>Second Zagreb and Sigma Indices of Semi and Total Transformations of Graphs</title><author>Yang, Zhen ; Arockiaraj, Micheal ; Prabhu, Savari ; Arulperumjothi, M. ; Liu, Jia-Bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e7a6bb387b5677f16ed97b8ec7518eafb09b7f8ea2d71c613edaabe014e092af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Connectivity</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Topology</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Arockiaraj, Micheal</creatorcontrib><creatorcontrib>Prabhu, Savari</creatorcontrib><creatorcontrib>Arulperumjothi, M.</creatorcontrib><creatorcontrib>Liu, Jia-Bao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhen</au><au>Arockiaraj, Micheal</au><au>Prabhu, Savari</au><au>Arulperumjothi, M.</au><au>Liu, Jia-Bao</au><au>Kwon, Oh-Min</au><au>Oh-Min Kwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second Zagreb and Sigma Indices of Semi and Total Transformations of Graphs</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in particular, bond-based indices play a vital role. The bond-additive topological indices of a molecular graph are defined as a sum of edge measures over all edges in which edge measures can be computed based on degrees, closeness, peripherality, and irregularity. In this study, we provide the mathematical characterization of the transformation of a structure that can be accomplished by the novel edge adjacency and incidence relations. We derive the exact expressions of bond type indices such as second Zagreb, sigma indices, and their coindices of total transformation and two types of semitransformations of the molecules which in turn can be used to characterize the topochemical and topostructural properties.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2021/6828424</doi><orcidid>https://orcid.org/0000-0002-4457-1046</orcidid><orcidid>https://orcid.org/0000-0001-9389-6536</orcidid><orcidid>https://orcid.org/0000-0002-1922-910X</orcidid><orcidid>https://orcid.org/0000-0001-8557-1643</orcidid><orcidid>https://orcid.org/0000-0002-9620-7692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2021, Vol.2021 (1) |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0f35f1635aab439fa5d1f91f810fbc76 |
source | Wiley Online Library Open Access |
subjects | Connectivity Graph theory Graphs Topology Transformations |
title | Second Zagreb and Sigma Indices of Semi and Total Transformations of Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20Zagreb%20and%20Sigma%20Indices%20of%20Semi%20and%20Total%20Transformations%20of%20Graphs&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Yang,%20Zhen&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/6828424&rft_dat=%3Cproquest_doaj_%3E2574089661%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-e7a6bb387b5677f16ed97b8ec7518eafb09b7f8ea2d71c613edaabe014e092af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574089661&rft_id=info:pmid/&rfr_iscdi=true |