Loading…

Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images

In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Muzaffar, Abdul Wahab, Riaz, Farhan, Abuain, Tarik, Abu-Ain, Waleed Abdel Karim, Hussain, Farhan, Farooq, Muhammad Umar, Azad, Muhammad Ajmal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3
cites cdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Muzaffar, Abdul Wahab
Riaz, Farhan
Abuain, Tarik
Abu-Ain, Waleed Abdel Karim
Hussain, Farhan
Farooq, Muhammad Umar
Azad, Muhammad Ajmal
description In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise.
doi_str_mv 10.1109/ACCESS.2023.3280053
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f3cdccdfdea494fb959e72ddf0c996a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10135089</ieee_id><doaj_id>oai_doaj_org_article_0f3cdccdfdea494fb959e72ddf0c996a</doaj_id><sourcerecordid>2828939581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</originalsourceid><addsrcrecordid>eNpNkc1OAyEUhSdGE432CXRB4rqVgWEAd82k1SaNGlvXhIGLmdoWBerP20sdY2QD9-Sc75Kcojgv8agssbwaN81ksRgRTOiIEoExowfFCSlrOaSM1of_3sfFIMYVzkdkifGT4vFGtz6gxm9T0DGhB50ShG28RmN0599hjaZBb-DDhxeUPJp8ZptJaAo67QJE5ILfoCV87ic02-hniGfFkdPrCIPf-7R4mk6Wze1wfn8za8bzoamwTENLK0GkbEvDWq0J5YRxXJMWhODUSCucY6KurQRjWso4Z05zYiXnFLO6belpMeu51uuVeg3dRocv5XWnfgQfnpUOqTNrUNhRY42xzoKuZOVaySRkmHXYSFnrzLrsWa_Bv-0gJrXyu7DN31dEECGpZKLMLtq7TPAxBnB_W0us9l2ovgu170L9dpFTF32qA4B_iZIynMnfvuiFKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828939581</pqid></control><display><type>article</type><title>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</title><source>IEEE Xplore Open Access Journals</source><creator>Muzaffar, Abdul Wahab ; Riaz, Farhan ; Abuain, Tarik ; Abu-Ain, Waleed Abdel Karim ; Hussain, Farhan ; Farooq, Muhammad Umar ; Azad, Muhammad Ajmal</creator><creatorcontrib>Muzaffar, Abdul Wahab ; Riaz, Farhan ; Abuain, Tarik ; Abu-Ain, Waleed Abdel Karim ; Hussain, Farhan ; Farooq, Muhammad Umar ; Azad, Muhammad Ajmal</creatorcontrib><description>In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3280053</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Electronic mail ; Feature extraction ; Filter banks ; Gabor filters ; Image classification ; Image contrast ; Image filters ; Information filters ; Pattern recognition ; Rotation ; Texture ; Texture classification ; Transforms ; Visualization</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</citedby><cites>FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</cites><orcidid>0000-0002-8023-7600 ; 0000-0001-7910-0378 ; 0000-0003-1520-0753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10135089$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Muzaffar, Abdul Wahab</creatorcontrib><creatorcontrib>Riaz, Farhan</creatorcontrib><creatorcontrib>Abuain, Tarik</creatorcontrib><creatorcontrib>Abu-Ain, Waleed Abdel Karim</creatorcontrib><creatorcontrib>Hussain, Farhan</creatorcontrib><creatorcontrib>Farooq, Muhammad Umar</creatorcontrib><creatorcontrib>Azad, Muhammad Ajmal</creatorcontrib><title>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise.</description><subject>Electronic mail</subject><subject>Feature extraction</subject><subject>Filter banks</subject><subject>Gabor filters</subject><subject>Image classification</subject><subject>Image contrast</subject><subject>Image filters</subject><subject>Information filters</subject><subject>Pattern recognition</subject><subject>Rotation</subject><subject>Texture</subject><subject>Texture classification</subject><subject>Transforms</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1OAyEUhSdGE432CXRB4rqVgWEAd82k1SaNGlvXhIGLmdoWBerP20sdY2QD9-Sc75Kcojgv8agssbwaN81ksRgRTOiIEoExowfFCSlrOaSM1of_3sfFIMYVzkdkifGT4vFGtz6gxm9T0DGhB50ShG28RmN0599hjaZBb-DDhxeUPJp8ZptJaAo67QJE5ILfoCV87ic02-hniGfFkdPrCIPf-7R4mk6Wze1wfn8za8bzoamwTENLK0GkbEvDWq0J5YRxXJMWhODUSCucY6KurQRjWso4Z05zYiXnFLO6belpMeu51uuVeg3dRocv5XWnfgQfnpUOqTNrUNhRY42xzoKuZOVaySRkmHXYSFnrzLrsWa_Bv-0gJrXyu7DN31dEECGpZKLMLtq7TPAxBnB_W0us9l2ovgu170L9dpFTF32qA4B_iZIynMnfvuiFKA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Muzaffar, Abdul Wahab</creator><creator>Riaz, Farhan</creator><creator>Abuain, Tarik</creator><creator>Abu-Ain, Waleed Abdel Karim</creator><creator>Hussain, Farhan</creator><creator>Farooq, Muhammad Umar</creator><creator>Azad, Muhammad Ajmal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8023-7600</orcidid><orcidid>https://orcid.org/0000-0001-7910-0378</orcidid><orcidid>https://orcid.org/0000-0003-1520-0753</orcidid></search><sort><creationdate>20230101</creationdate><title>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</title><author>Muzaffar, Abdul Wahab ; Riaz, Farhan ; Abuain, Tarik ; Abu-Ain, Waleed Abdel Karim ; Hussain, Farhan ; Farooq, Muhammad Umar ; Azad, Muhammad Ajmal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electronic mail</topic><topic>Feature extraction</topic><topic>Filter banks</topic><topic>Gabor filters</topic><topic>Image classification</topic><topic>Image contrast</topic><topic>Image filters</topic><topic>Information filters</topic><topic>Pattern recognition</topic><topic>Rotation</topic><topic>Texture</topic><topic>Texture classification</topic><topic>Transforms</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muzaffar, Abdul Wahab</creatorcontrib><creatorcontrib>Riaz, Farhan</creatorcontrib><creatorcontrib>Abuain, Tarik</creatorcontrib><creatorcontrib>Abu-Ain, Waleed Abdel Karim</creatorcontrib><creatorcontrib>Hussain, Farhan</creatorcontrib><creatorcontrib>Farooq, Muhammad Umar</creatorcontrib><creatorcontrib>Azad, Muhammad Ajmal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muzaffar, Abdul Wahab</au><au>Riaz, Farhan</au><au>Abuain, Tarik</au><au>Abu-Ain, Waleed Abdel Karim</au><au>Hussain, Farhan</au><au>Farooq, Muhammad Umar</au><au>Azad, Muhammad Ajmal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3280053</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8023-7600</orcidid><orcidid>https://orcid.org/0000-0001-7910-0378</orcidid><orcidid>https://orcid.org/0000-0003-1520-0753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0f3cdccdfdea494fb959e72ddf0c996a
source IEEE Xplore Open Access Journals
subjects Electronic mail
Feature extraction
Filter banks
Gabor filters
Image classification
Image contrast
Image filters
Information filters
Pattern recognition
Rotation
Texture
Texture classification
Transforms
Visualization
title Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gabor%20Contrast%20Patterns:%20A%20Novel%20Framework%20to%20Extract%20Features%20from%20Texture%20Images&rft.jtitle=IEEE%20access&rft.au=Muzaffar,%20Abdul%20Wahab&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3280053&rft_dat=%3Cproquest_doaj_%3E2828939581%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828939581&rft_id=info:pmid/&rft_ieee_id=10135089&rfr_iscdi=true