Loading…
Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images
In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to r...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Muzaffar, Abdul Wahab Riaz, Farhan Abuain, Tarik Abu-Ain, Waleed Abdel Karim Hussain, Farhan Farooq, Muhammad Umar Azad, Muhammad Ajmal |
description | In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise. |
doi_str_mv | 10.1109/ACCESS.2023.3280053 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f3cdccdfdea494fb959e72ddf0c996a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10135089</ieee_id><doaj_id>oai_doaj_org_article_0f3cdccdfdea494fb959e72ddf0c996a</doaj_id><sourcerecordid>2828939581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</originalsourceid><addsrcrecordid>eNpNkc1OAyEUhSdGE432CXRB4rqVgWEAd82k1SaNGlvXhIGLmdoWBerP20sdY2QD9-Sc75Kcojgv8agssbwaN81ksRgRTOiIEoExowfFCSlrOaSM1of_3sfFIMYVzkdkifGT4vFGtz6gxm9T0DGhB50ShG28RmN0599hjaZBb-DDhxeUPJp8ZptJaAo67QJE5ILfoCV87ic02-hniGfFkdPrCIPf-7R4mk6Wze1wfn8za8bzoamwTENLK0GkbEvDWq0J5YRxXJMWhODUSCucY6KurQRjWso4Z05zYiXnFLO6belpMeu51uuVeg3dRocv5XWnfgQfnpUOqTNrUNhRY42xzoKuZOVaySRkmHXYSFnrzLrsWa_Bv-0gJrXyu7DN31dEECGpZKLMLtq7TPAxBnB_W0us9l2ovgu170L9dpFTF32qA4B_iZIynMnfvuiFKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828939581</pqid></control><display><type>article</type><title>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</title><source>IEEE Xplore Open Access Journals</source><creator>Muzaffar, Abdul Wahab ; Riaz, Farhan ; Abuain, Tarik ; Abu-Ain, Waleed Abdel Karim ; Hussain, Farhan ; Farooq, Muhammad Umar ; Azad, Muhammad Ajmal</creator><creatorcontrib>Muzaffar, Abdul Wahab ; Riaz, Farhan ; Abuain, Tarik ; Abu-Ain, Waleed Abdel Karim ; Hussain, Farhan ; Farooq, Muhammad Umar ; Azad, Muhammad Ajmal</creatorcontrib><description>In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3280053</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Electronic mail ; Feature extraction ; Filter banks ; Gabor filters ; Image classification ; Image contrast ; Image filters ; Information filters ; Pattern recognition ; Rotation ; Texture ; Texture classification ; Transforms ; Visualization</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</citedby><cites>FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</cites><orcidid>0000-0002-8023-7600 ; 0000-0001-7910-0378 ; 0000-0003-1520-0753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10135089$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Muzaffar, Abdul Wahab</creatorcontrib><creatorcontrib>Riaz, Farhan</creatorcontrib><creatorcontrib>Abuain, Tarik</creatorcontrib><creatorcontrib>Abu-Ain, Waleed Abdel Karim</creatorcontrib><creatorcontrib>Hussain, Farhan</creatorcontrib><creatorcontrib>Farooq, Muhammad Umar</creatorcontrib><creatorcontrib>Azad, Muhammad Ajmal</creatorcontrib><title>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise.</description><subject>Electronic mail</subject><subject>Feature extraction</subject><subject>Filter banks</subject><subject>Gabor filters</subject><subject>Image classification</subject><subject>Image contrast</subject><subject>Image filters</subject><subject>Information filters</subject><subject>Pattern recognition</subject><subject>Rotation</subject><subject>Texture</subject><subject>Texture classification</subject><subject>Transforms</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1OAyEUhSdGE432CXRB4rqVgWEAd82k1SaNGlvXhIGLmdoWBerP20sdY2QD9-Sc75Kcojgv8agssbwaN81ksRgRTOiIEoExowfFCSlrOaSM1of_3sfFIMYVzkdkifGT4vFGtz6gxm9T0DGhB50ShG28RmN0599hjaZBb-DDhxeUPJp8ZptJaAo67QJE5ILfoCV87ic02-hniGfFkdPrCIPf-7R4mk6Wze1wfn8za8bzoamwTENLK0GkbEvDWq0J5YRxXJMWhODUSCucY6KurQRjWso4Z05zYiXnFLO6belpMeu51uuVeg3dRocv5XWnfgQfnpUOqTNrUNhRY42xzoKuZOVaySRkmHXYSFnrzLrsWa_Bv-0gJrXyu7DN31dEECGpZKLMLtq7TPAxBnB_W0us9l2ovgu170L9dpFTF32qA4B_iZIynMnfvuiFKA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Muzaffar, Abdul Wahab</creator><creator>Riaz, Farhan</creator><creator>Abuain, Tarik</creator><creator>Abu-Ain, Waleed Abdel Karim</creator><creator>Hussain, Farhan</creator><creator>Farooq, Muhammad Umar</creator><creator>Azad, Muhammad Ajmal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8023-7600</orcidid><orcidid>https://orcid.org/0000-0001-7910-0378</orcidid><orcidid>https://orcid.org/0000-0003-1520-0753</orcidid></search><sort><creationdate>20230101</creationdate><title>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</title><author>Muzaffar, Abdul Wahab ; Riaz, Farhan ; Abuain, Tarik ; Abu-Ain, Waleed Abdel Karim ; Hussain, Farhan ; Farooq, Muhammad Umar ; Azad, Muhammad Ajmal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electronic mail</topic><topic>Feature extraction</topic><topic>Filter banks</topic><topic>Gabor filters</topic><topic>Image classification</topic><topic>Image contrast</topic><topic>Image filters</topic><topic>Information filters</topic><topic>Pattern recognition</topic><topic>Rotation</topic><topic>Texture</topic><topic>Texture classification</topic><topic>Transforms</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muzaffar, Abdul Wahab</creatorcontrib><creatorcontrib>Riaz, Farhan</creatorcontrib><creatorcontrib>Abuain, Tarik</creatorcontrib><creatorcontrib>Abu-Ain, Waleed Abdel Karim</creatorcontrib><creatorcontrib>Hussain, Farhan</creatorcontrib><creatorcontrib>Farooq, Muhammad Umar</creatorcontrib><creatorcontrib>Azad, Muhammad Ajmal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muzaffar, Abdul Wahab</au><au>Riaz, Farhan</au><au>Abuain, Tarik</au><au>Abu-Ain, Waleed Abdel Karim</au><au>Hussain, Farhan</au><au>Farooq, Muhammad Umar</au><au>Azad, Muhammad Ajmal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we propose a novel rotation and scale invariant approach to texture classification based on Gabor filters. These filters are designed to capture the visual content of the images based on their impulse responses which are sensitive to rotation and scaling in the images. We propose to rearrange the filter responses according to the filter exhibiting the response having largest amplitude, followed by the calculation of patterns after binarizing the responses based on a particular threshold. This threshold is obtained as the average energy of Gabor filter responses at a particular pixel. The binary patterns are converted to decimal numbers, the histograms of which are used as texture features. The proposed features are used to classify the images from two famous texture datasets: Brodatz, CUReT andUMDtexture albums. Experiments show that the proposed feature extraction method performs really well when compared with several other state-of-the-art methods considered in this paper and is more robust to noise.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3280053</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8023-7600</orcidid><orcidid>https://orcid.org/0000-0001-7910-0378</orcidid><orcidid>https://orcid.org/0000-0003-1520-0753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0f3cdccdfdea494fb959e72ddf0c996a |
source | IEEE Xplore Open Access Journals |
subjects | Electronic mail Feature extraction Filter banks Gabor filters Image classification Image contrast Image filters Information filters Pattern recognition Rotation Texture Texture classification Transforms Visualization |
title | Gabor Contrast Patterns: A Novel Framework to Extract Features from Texture Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gabor%20Contrast%20Patterns:%20A%20Novel%20Framework%20to%20Extract%20Features%20from%20Texture%20Images&rft.jtitle=IEEE%20access&rft.au=Muzaffar,%20Abdul%20Wahab&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3280053&rft_dat=%3Cproquest_doaj_%3E2828939581%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-d348299b1c5baa237257062be8873c9d8ff5866d9eccb35775fa72d9773056bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828939581&rft_id=info:pmid/&rft_ieee_id=10135089&rfr_iscdi=true |