Loading…
Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis
CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge bec...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2023-02, Vol.28 (4), p.1776 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203 |
container_end_page | |
container_issue | 4 |
container_start_page | 1776 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 28 |
creator | Chávez-Rocha, Rogelio Mercado-Sánchez, Itzel Vargas-Rodriguez, Ismael Hernández-Lima, Joseelyne Bazán-Jiménez, Adán Robles, Juvencio García-Revilla, Marco A. |
description | CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption. |
doi_str_mv | 10.3390/molecules28041776 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f5b2094dfe4470d87bad77f27d5d86a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f5b2094dfe4470d87bad77f27d5d86a</doaj_id><sourcerecordid>2780074540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</originalsourceid><addsrcrecordid>eNplkktr3DAQgE1paNKkP6A3Qy-9bDuSZT16KISlj4WEhSa3HoQsjbZaZGsr2aH597W7oTTNaYaZbz6GYarqNYF3TaPgfZ8i2ilioRIYEYI_q84Io7BqgKnn_-Sn1ctS9gCUMNK-qE4bLhspODurvl8nhzEMu_rSlZQPY0hDnXy93tI6DPW3aQwR62scTYzB1ttfwWF9M2VvLJYP9aY_zGWzTJWFX8bWZobvSygX1Yk3seCrh3he3X7-dLv-urraftmsL69WlgGMK-uNdFZwwpnnEiVTnCvPW4odIqGWdJy2UrUenHPAm1Y4h2iE68BLCs15tTlqXTJ7fcihN_leJxP0n0LKO23yGGxEDb7tKCjmPDImwEnRGSeEp8K1TnIzuz4eXYep69FZHMZs4iPp484QfuhdutNKcUJIOwvePghy-jlhGXUfisUYzYBpKpoKCSBYy5a93_yH7tOUh_lSMyUUZ4TQZqbIkbI5lZLR_12GgF6-QD_5guY3jOCmQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779641123</pqid></control><display><type>article</type><title>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Chávez-Rocha, Rogelio ; Mercado-Sánchez, Itzel ; Vargas-Rodriguez, Ismael ; Hernández-Lima, Joseelyne ; Bazán-Jiménez, Adán ; Robles, Juvencio ; García-Revilla, Marco A.</creator><creatorcontrib>Chávez-Rocha, Rogelio ; Mercado-Sánchez, Itzel ; Vargas-Rodriguez, Ismael ; Hernández-Lima, Joseelyne ; Bazán-Jiménez, Adán ; Robles, Juvencio ; García-Revilla, Marco A.</creatorcontrib><description>CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28041776</identifier><identifier>PMID: 36838764</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbates ; Adsorption ; Carbon dioxide ; Catalysis ; Chemisorption ; Climate change ; CO2 adsorption ; Configurations ; Crystal structure ; Density functional theory ; DFT calculations ; Energy industry ; Energy of dissociation ; Environmental cleanup ; environmental remediation ; Free energy ; Geometry ; Germanium oxides ; Greenhouse effect ; Greenhouse gases ; Heat of formation ; Lead oxides ; Metal oxides ; metallic oxide ; Modelling ; Oxides ; Rutile ; Surface chemistry ; Tin dioxide ; Titanium dioxide</subject><ispartof>Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1776</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</citedby><cites>FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</cites><orcidid>0000-0002-8702-5782 ; 0000-0002-4287-9987 ; 0000-0001-6012-1750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779641123/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779641123?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Chávez-Rocha, Rogelio</creatorcontrib><creatorcontrib>Mercado-Sánchez, Itzel</creatorcontrib><creatorcontrib>Vargas-Rodriguez, Ismael</creatorcontrib><creatorcontrib>Hernández-Lima, Joseelyne</creatorcontrib><creatorcontrib>Bazán-Jiménez, Adán</creatorcontrib><creatorcontrib>Robles, Juvencio</creatorcontrib><creatorcontrib>García-Revilla, Marco A.</creatorcontrib><title>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</title><title>Molecules (Basel, Switzerland)</title><description>CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Chemisorption</subject><subject>Climate change</subject><subject>CO2 adsorption</subject><subject>Configurations</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>DFT calculations</subject><subject>Energy industry</subject><subject>Energy of dissociation</subject><subject>Environmental cleanup</subject><subject>environmental remediation</subject><subject>Free energy</subject><subject>Geometry</subject><subject>Germanium oxides</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat of formation</subject><subject>Lead oxides</subject><subject>Metal oxides</subject><subject>metallic oxide</subject><subject>Modelling</subject><subject>Oxides</subject><subject>Rutile</subject><subject>Surface chemistry</subject><subject>Tin dioxide</subject><subject>Titanium dioxide</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkktr3DAQgE1paNKkP6A3Qy-9bDuSZT16KISlj4WEhSa3HoQsjbZaZGsr2aH597W7oTTNaYaZbz6GYarqNYF3TaPgfZ8i2ilioRIYEYI_q84Io7BqgKnn_-Sn1ctS9gCUMNK-qE4bLhspODurvl8nhzEMu_rSlZQPY0hDnXy93tI6DPW3aQwR62scTYzB1ttfwWF9M2VvLJYP9aY_zGWzTJWFX8bWZobvSygX1Yk3seCrh3he3X7-dLv-urraftmsL69WlgGMK-uNdFZwwpnnEiVTnCvPW4odIqGWdJy2UrUenHPAm1Y4h2iE68BLCs15tTlqXTJ7fcihN_leJxP0n0LKO23yGGxEDb7tKCjmPDImwEnRGSeEp8K1TnIzuz4eXYep69FZHMZs4iPp484QfuhdutNKcUJIOwvePghy-jlhGXUfisUYzYBpKpoKCSBYy5a93_yH7tOUh_lSMyUUZ4TQZqbIkbI5lZLR_12GgF6-QD_5guY3jOCmQA</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Chávez-Rocha, Rogelio</creator><creator>Mercado-Sánchez, Itzel</creator><creator>Vargas-Rodriguez, Ismael</creator><creator>Hernández-Lima, Joseelyne</creator><creator>Bazán-Jiménez, Adán</creator><creator>Robles, Juvencio</creator><creator>García-Revilla, Marco A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8702-5782</orcidid><orcidid>https://orcid.org/0000-0002-4287-9987</orcidid><orcidid>https://orcid.org/0000-0001-6012-1750</orcidid></search><sort><creationdate>20230213</creationdate><title>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</title><author>Chávez-Rocha, Rogelio ; Mercado-Sánchez, Itzel ; Vargas-Rodriguez, Ismael ; Hernández-Lima, Joseelyne ; Bazán-Jiménez, Adán ; Robles, Juvencio ; García-Revilla, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Chemisorption</topic><topic>Climate change</topic><topic>CO2 adsorption</topic><topic>Configurations</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>DFT calculations</topic><topic>Energy industry</topic><topic>Energy of dissociation</topic><topic>Environmental cleanup</topic><topic>environmental remediation</topic><topic>Free energy</topic><topic>Geometry</topic><topic>Germanium oxides</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat of formation</topic><topic>Lead oxides</topic><topic>Metal oxides</topic><topic>metallic oxide</topic><topic>Modelling</topic><topic>Oxides</topic><topic>Rutile</topic><topic>Surface chemistry</topic><topic>Tin dioxide</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chávez-Rocha, Rogelio</creatorcontrib><creatorcontrib>Mercado-Sánchez, Itzel</creatorcontrib><creatorcontrib>Vargas-Rodriguez, Ismael</creatorcontrib><creatorcontrib>Hernández-Lima, Joseelyne</creatorcontrib><creatorcontrib>Bazán-Jiménez, Adán</creatorcontrib><creatorcontrib>Robles, Juvencio</creatorcontrib><creatorcontrib>García-Revilla, Marco A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chávez-Rocha, Rogelio</au><au>Mercado-Sánchez, Itzel</au><au>Vargas-Rodriguez, Ismael</au><au>Hernández-Lima, Joseelyne</au><au>Bazán-Jiménez, Adán</au><au>Robles, Juvencio</au><au>García-Revilla, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2023-02-13</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1776</spage><pages>1776-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36838764</pmid><doi>10.3390/molecules28041776</doi><orcidid>https://orcid.org/0000-0002-8702-5782</orcidid><orcidid>https://orcid.org/0000-0002-4287-9987</orcidid><orcidid>https://orcid.org/0000-0001-6012-1750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1776 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0f5b2094dfe4470d87bad77f27d5d86a |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Adsorbates Adsorption Carbon dioxide Catalysis Chemisorption Climate change CO2 adsorption Configurations Crystal structure Density functional theory DFT calculations Energy industry Energy of dissociation Environmental cleanup environmental remediation Free energy Geometry Germanium oxides Greenhouse effect Greenhouse gases Heat of formation Lead oxides Metal oxides metallic oxide Modelling Oxides Rutile Surface chemistry Tin dioxide Titanium dioxide |
title | Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Adsorption%20of%20CO2%20in%20Rutile%20Metallic%20Oxide%20Surfaces:%20Implications%20in%20CO2%20Catalysis&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Ch%C3%A1vez-Rocha,%20Rogelio&rft.date=2023-02-13&rft.volume=28&rft.issue=4&rft.spage=1776&rft.pages=1776-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28041776&rft_dat=%3Cproquest_doaj_%3E2780074540%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779641123&rft_id=info:pmid/36838764&rfr_iscdi=true |