Loading…

Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis

CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge bec...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-02, Vol.28 (4), p.1776
Main Authors: Chávez-Rocha, Rogelio, Mercado-Sánchez, Itzel, Vargas-Rodriguez, Ismael, Hernández-Lima, Joseelyne, Bazán-Jiménez, Adán, Robles, Juvencio, García-Revilla, Marco A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203
cites cdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203
container_end_page
container_issue 4
container_start_page 1776
container_title Molecules (Basel, Switzerland)
container_volume 28
creator Chávez-Rocha, Rogelio
Mercado-Sánchez, Itzel
Vargas-Rodriguez, Ismael
Hernández-Lima, Joseelyne
Bazán-Jiménez, Adán
Robles, Juvencio
García-Revilla, Marco A.
description CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.
doi_str_mv 10.3390/molecules28041776
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0f5b2094dfe4470d87bad77f27d5d86a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f5b2094dfe4470d87bad77f27d5d86a</doaj_id><sourcerecordid>2780074540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</originalsourceid><addsrcrecordid>eNplkktr3DAQgE1paNKkP6A3Qy-9bDuSZT16KISlj4WEhSa3HoQsjbZaZGsr2aH597W7oTTNaYaZbz6GYarqNYF3TaPgfZ8i2ilioRIYEYI_q84Io7BqgKnn_-Sn1ctS9gCUMNK-qE4bLhspODurvl8nhzEMu_rSlZQPY0hDnXy93tI6DPW3aQwR62scTYzB1ttfwWF9M2VvLJYP9aY_zGWzTJWFX8bWZobvSygX1Yk3seCrh3he3X7-dLv-urraftmsL69WlgGMK-uNdFZwwpnnEiVTnCvPW4odIqGWdJy2UrUenHPAm1Y4h2iE68BLCs15tTlqXTJ7fcihN_leJxP0n0LKO23yGGxEDb7tKCjmPDImwEnRGSeEp8K1TnIzuz4eXYep69FZHMZs4iPp484QfuhdutNKcUJIOwvePghy-jlhGXUfisUYzYBpKpoKCSBYy5a93_yH7tOUh_lSMyUUZ4TQZqbIkbI5lZLR_12GgF6-QD_5guY3jOCmQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779641123</pqid></control><display><type>article</type><title>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Chávez-Rocha, Rogelio ; Mercado-Sánchez, Itzel ; Vargas-Rodriguez, Ismael ; Hernández-Lima, Joseelyne ; Bazán-Jiménez, Adán ; Robles, Juvencio ; García-Revilla, Marco A.</creator><creatorcontrib>Chávez-Rocha, Rogelio ; Mercado-Sánchez, Itzel ; Vargas-Rodriguez, Ismael ; Hernández-Lima, Joseelyne ; Bazán-Jiménez, Adán ; Robles, Juvencio ; García-Revilla, Marco A.</creatorcontrib><description>CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28041776</identifier><identifier>PMID: 36838764</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbates ; Adsorption ; Carbon dioxide ; Catalysis ; Chemisorption ; Climate change ; CO2 adsorption ; Configurations ; Crystal structure ; Density functional theory ; DFT calculations ; Energy industry ; Energy of dissociation ; Environmental cleanup ; environmental remediation ; Free energy ; Geometry ; Germanium oxides ; Greenhouse effect ; Greenhouse gases ; Heat of formation ; Lead oxides ; Metal oxides ; metallic oxide ; Modelling ; Oxides ; Rutile ; Surface chemistry ; Tin dioxide ; Titanium dioxide</subject><ispartof>Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1776</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</citedby><cites>FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</cites><orcidid>0000-0002-8702-5782 ; 0000-0002-4287-9987 ; 0000-0001-6012-1750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779641123/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779641123?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Chávez-Rocha, Rogelio</creatorcontrib><creatorcontrib>Mercado-Sánchez, Itzel</creatorcontrib><creatorcontrib>Vargas-Rodriguez, Ismael</creatorcontrib><creatorcontrib>Hernández-Lima, Joseelyne</creatorcontrib><creatorcontrib>Bazán-Jiménez, Adán</creatorcontrib><creatorcontrib>Robles, Juvencio</creatorcontrib><creatorcontrib>García-Revilla, Marco A.</creatorcontrib><title>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</title><title>Molecules (Basel, Switzerland)</title><description>CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Chemisorption</subject><subject>Climate change</subject><subject>CO2 adsorption</subject><subject>Configurations</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>DFT calculations</subject><subject>Energy industry</subject><subject>Energy of dissociation</subject><subject>Environmental cleanup</subject><subject>environmental remediation</subject><subject>Free energy</subject><subject>Geometry</subject><subject>Germanium oxides</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat of formation</subject><subject>Lead oxides</subject><subject>Metal oxides</subject><subject>metallic oxide</subject><subject>Modelling</subject><subject>Oxides</subject><subject>Rutile</subject><subject>Surface chemistry</subject><subject>Tin dioxide</subject><subject>Titanium dioxide</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkktr3DAQgE1paNKkP6A3Qy-9bDuSZT16KISlj4WEhSa3HoQsjbZaZGsr2aH597W7oTTNaYaZbz6GYarqNYF3TaPgfZ8i2ilioRIYEYI_q84Io7BqgKnn_-Sn1ctS9gCUMNK-qE4bLhspODurvl8nhzEMu_rSlZQPY0hDnXy93tI6DPW3aQwR62scTYzB1ttfwWF9M2VvLJYP9aY_zGWzTJWFX8bWZobvSygX1Yk3seCrh3he3X7-dLv-urraftmsL69WlgGMK-uNdFZwwpnnEiVTnCvPW4odIqGWdJy2UrUenHPAm1Y4h2iE68BLCs15tTlqXTJ7fcihN_leJxP0n0LKO23yGGxEDb7tKCjmPDImwEnRGSeEp8K1TnIzuz4eXYep69FZHMZs4iPp484QfuhdutNKcUJIOwvePghy-jlhGXUfisUYzYBpKpoKCSBYy5a93_yH7tOUh_lSMyUUZ4TQZqbIkbI5lZLR_12GgF6-QD_5guY3jOCmQA</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Chávez-Rocha, Rogelio</creator><creator>Mercado-Sánchez, Itzel</creator><creator>Vargas-Rodriguez, Ismael</creator><creator>Hernández-Lima, Joseelyne</creator><creator>Bazán-Jiménez, Adán</creator><creator>Robles, Juvencio</creator><creator>García-Revilla, Marco A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8702-5782</orcidid><orcidid>https://orcid.org/0000-0002-4287-9987</orcidid><orcidid>https://orcid.org/0000-0001-6012-1750</orcidid></search><sort><creationdate>20230213</creationdate><title>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</title><author>Chávez-Rocha, Rogelio ; Mercado-Sánchez, Itzel ; Vargas-Rodriguez, Ismael ; Hernández-Lima, Joseelyne ; Bazán-Jiménez, Adán ; Robles, Juvencio ; García-Revilla, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Chemisorption</topic><topic>Climate change</topic><topic>CO2 adsorption</topic><topic>Configurations</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>DFT calculations</topic><topic>Energy industry</topic><topic>Energy of dissociation</topic><topic>Environmental cleanup</topic><topic>environmental remediation</topic><topic>Free energy</topic><topic>Geometry</topic><topic>Germanium oxides</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat of formation</topic><topic>Lead oxides</topic><topic>Metal oxides</topic><topic>metallic oxide</topic><topic>Modelling</topic><topic>Oxides</topic><topic>Rutile</topic><topic>Surface chemistry</topic><topic>Tin dioxide</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chávez-Rocha, Rogelio</creatorcontrib><creatorcontrib>Mercado-Sánchez, Itzel</creatorcontrib><creatorcontrib>Vargas-Rodriguez, Ismael</creatorcontrib><creatorcontrib>Hernández-Lima, Joseelyne</creatorcontrib><creatorcontrib>Bazán-Jiménez, Adán</creatorcontrib><creatorcontrib>Robles, Juvencio</creatorcontrib><creatorcontrib>García-Revilla, Marco A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chávez-Rocha, Rogelio</au><au>Mercado-Sánchez, Itzel</au><au>Vargas-Rodriguez, Ismael</au><au>Hernández-Lima, Joseelyne</au><au>Bazán-Jiménez, Adán</au><au>Robles, Juvencio</au><au>García-Revilla, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2023-02-13</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1776</spage><pages>1776-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36838764</pmid><doi>10.3390/molecules28041776</doi><orcidid>https://orcid.org/0000-0002-8702-5782</orcidid><orcidid>https://orcid.org/0000-0002-4287-9987</orcidid><orcidid>https://orcid.org/0000-0001-6012-1750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1776
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0f5b2094dfe4470d87bad77f27d5d86a
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Adsorbates
Adsorption
Carbon dioxide
Catalysis
Chemisorption
Climate change
CO2 adsorption
Configurations
Crystal structure
Density functional theory
DFT calculations
Energy industry
Energy of dissociation
Environmental cleanup
environmental remediation
Free energy
Geometry
Germanium oxides
Greenhouse effect
Greenhouse gases
Heat of formation
Lead oxides
Metal oxides
metallic oxide
Modelling
Oxides
Rutile
Surface chemistry
Tin dioxide
Titanium dioxide
title Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Adsorption%20of%20CO2%20in%20Rutile%20Metallic%20Oxide%20Surfaces:%20Implications%20in%20CO2%20Catalysis&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Ch%C3%A1vez-Rocha,%20Rogelio&rft.date=2023-02-13&rft.volume=28&rft.issue=4&rft.spage=1776&rft.pages=1776-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28041776&rft_dat=%3Cproquest_doaj_%3E2780074540%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-cfa8dc76164f68e849669f652ebee12c1b625895f0ddd06357ddeea7db0f8203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779641123&rft_id=info:pmid/36838764&rfr_iscdi=true