Loading…

Functional Ca2+ Channels between Channel Clusters are Necessary for the Propagation of IP3R-Mediated Ca2+ Waves

The specificity and universality of intracellular Ca 2 + signals rely on the variety of spatio-temporal patterns that the Ca 2 + concentration can display. Ca 2 + release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP 3 Rs) is key for this variety. The opening probability of IP...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computational applications 2019-06, Vol.24 (2), p.61
Main Authors: Piegari, Estefanía, Ponce Dawson, Silvina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The specificity and universality of intracellular Ca 2 + signals rely on the variety of spatio-temporal patterns that the Ca 2 + concentration can display. Ca 2 + release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP 3 Rs) is key for this variety. The opening probability of IP 3 Rs depends on the cytosolic Ca 2 + concentration. All of the dynamics are then well described by an excitable system in which the signal propagation depends on the ability of the Ca 2 + released through one IP 3 R to induce the opening of other IP 3 Rs. In most cell types, IP 3 Rs are organized in clusters, i.e., the cytosol is a “patchy” excitable system in which the signals can remain localized (i.e., involving the release through one or more IP 3 Rs in a cluster), or become global depending on the efficiency of the Ca 2 + -mediated coupling between clusters. The spatial range over which the signals propagate determines the responses that the cell eventually produces. This points to the importance of understanding the mechanisms that make the propagation possible. Our previous qualitative comparison between experiments and numerical simulations seemed to indicate that Ca 2 + release not only occurs within the close vicinity of the clearly identifiable release sites (IP 3 R clusters) but that there are also functional IP 3 Rs in between them. In this paper, we present a quantitative comparison between experiments and models that corroborate this preliminary conclusion. This result has implications on how the Ca 2 + -mediated coupling between clusters works and how it can eventually be disrupted by the different Ca 2 + trapping mechanisms.
ISSN:2297-8747
2297-8747
DOI:10.3390/mca24020061