Loading…

The Ketogenic Diet Increases In Vivo Glutathione Levels in Patients with Epilepsy

The Ketogenic Diet (KD) is a high-fat, low-carbohydrate diet that has been utilized as the first line treatment for contrasting intractable epilepsy. It is responsible for the presence of ketone bodies in blood, whose neuroprotective effect has been widely shown in recent years but remains unclear....

Full description

Saved in:
Bibliographic Details
Published in:Metabolites 2020-12, Vol.10 (12), p.504
Main Authors: Napolitano, Antonio, Longo, Daniela, Lucignani, Martina, Pasquini, Luca, Rossi-Espagnet, Maria Camilla, Lucignani, Giulia, Maiorana, Arianna, Elia, Domenica, De Liso, Paola, Dionisi-Vici, Carlo, Cusmai, Raffaella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Ketogenic Diet (KD) is a high-fat, low-carbohydrate diet that has been utilized as the first line treatment for contrasting intractable epilepsy. It is responsible for the presence of ketone bodies in blood, whose neuroprotective effect has been widely shown in recent years but remains unclear. Since glutathione (GSH) is implicated in oxidation-reduction reactions, our aim was to monitor the effects of KD on GSH brain levels by means of magnetic resonance spectroscopy (MRS). MRS was acquired from 16 KD patients and seven age-matched Healthy Controls (HC). We estimated metabolite concentrations with linear combination model (LCModel), assessing differences between KD and HC with -test. Pearson was used to investigate GHS correlations with blood serum 3-B-Hydroxybutyrate (3HB) concentrations and with number of weekly epileptic seizures. The results have shown higher levels of brain GSH for KD patients (2.5 ± 0.5 mM) compared to HC (2.0 ± 0.5 mM). Both blood serum 3HB and number of seizures did not correlate with GSH concentration. The present study showed a significant increase in GSH in the brain of epileptic children treated with KD, reproducing for the first time in humans what was previously observed in animal studies. Our results may suggest a pivotal role of GSH in the antioxidant neuroprotective effect of KD in the human brain.
ISSN:2218-1989
2218-1989
DOI:10.3390/metabo10120504