Loading…

Non-aqueous green solvents improve alpha-amylase induced fiber opening in leather processing

Severe water deficit and highly polluting effluent generation from leather industries have constantly been pressurizing the tanners to adopt cleaner leather processing systems. The present study aims to minimize the use of water by substituting it with non-aqueous green solvents and also to enhance...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-12, Vol.10 (1), p.22274-22274, Article 22274
Main Authors: Ramamoorthi, Poornima, Rathinam, Aravindhan, Jonnalagadda, Raghava Rao, Palanisamy, Thanikaivelan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Severe water deficit and highly polluting effluent generation from leather industries have constantly been pressurizing the tanners to adopt cleaner leather processing systems. The present study aims to minimize the use of water by substituting it with non-aqueous green solvents and also to enhance the enzyme action in alpha-amylase based fiber opening process. The activity of alpha-amylase in select non-aqueous green solvents namely, heptane, polyethylene glycol 200 and propylene glycol is considerably higher by 62, 38 and 31% than in water, respectively. Comparable results are obtained for the catalytic efficiency of alpha-amylase and hence it is further validated in collagen fiber opening trials as well. Scanning electron micrographs, histological images and proteoglycan estimation supported the above findings at 1% alpha-amylase dosage. The final quality of the experimental leathers in terms of physical and bulk properties is comparable to that of control leathers. Recycling studies indicate that it is possible to replace water with green solvents for enzymatic fiber opening with the feasibility to recover more than 85% solvent-enzyme mixture and reuse without any additional alpha-amylase usage. Reduction in pollution load coupled with the efficient catalytic action of enzyme in non-aqueous media favors the present protocol for industrial applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-79406-8