Loading…

The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes

Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in microbiology 2019-04, Vol.10, p.806-806
Main Authors: Ponsero, Alise J, Hurwitz, Bonnie L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3
cites cdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3
container_end_page 806
container_issue
container_start_page 806
container_title Frontiers in microbiology
container_volume 10
creator Ponsero, Alise J
Hurwitz, Bonnie L
description Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them.
doi_str_mv 10.3389/fmicb.2019.00806
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0fd748d534bd471ea5acf3d516862ecf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0fd748d534bd471ea5acf3d516862ecf</doaj_id><sourcerecordid>2231898683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</originalsourceid><addsrcrecordid>eNpVkc9vFCEUx4nR2Gbt3ZPh6GVXfg3DXEyaarXJNvbQNsYLYeCxSzMDLcyY9L-X3a1NywEe8L6f9-CL0EdKVpyr7osfg-1XjNBuRYgi8g06plKKJSfs99sX8RE6KeWO1CEIq_N7dMQpadqG8mP053oL-CqnMRQo2ESHr8LkzTAUnDy-NHYbIuA1mBxD3GCfMv4GE9hpt7sNed7JQsSnD7OZgsWXMJkNxDRC-YDeVVCBk6d1gW7Ov1-f_Vyuf_24ODtdL62QbFraXgjvpOG0N1R2Srm2o5Q7QT3pjBVeUWiN4C1rjGWeAJEt6eqzleVNQy1foIsD1yVzp-9zGE1-1MkEvT9IeaNNrr0NoIl3rVCu4aJ3oqVgKtJz11CpJIMaLtDXA-t-7kdwFuKUzfAK-vomhq3epL9airYlSlXA5ydATg8zlEnXn7UwDCZCmotmjFPVKal4TSWHVJtTKRn8cxlK9M5hvXdY7xzWe4er5NPL9p4F__3k_wC-pqLi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231898683</pqid></control><display><type>article</type><title>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</title><source>PubMed Central</source><creator>Ponsero, Alise J ; Hurwitz, Bonnie L</creator><creatorcontrib>Ponsero, Alise J ; Hurwitz, Bonnie L</creatorcontrib><description>Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2019.00806</identifier><identifier>PMID: 31057513</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>machine learning ; metagenomic ; Microbiology ; sequence classification ; viral signature ; virus</subject><ispartof>Frontiers in microbiology, 2019-04, Vol.10, p.806-806</ispartof><rights>Copyright © 2019 Ponsero and Hurwitz. 2019 Ponsero and Hurwitz</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</citedby><cites>FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477088/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477088/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31057513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponsero, Alise J</creatorcontrib><creatorcontrib>Hurwitz, Bonnie L</creatorcontrib><title>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</title><title>Frontiers in microbiology</title><addtitle>Front Microbiol</addtitle><description>Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them.</description><subject>machine learning</subject><subject>metagenomic</subject><subject>Microbiology</subject><subject>sequence classification</subject><subject>viral signature</subject><subject>virus</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc9vFCEUx4nR2Gbt3ZPh6GVXfg3DXEyaarXJNvbQNsYLYeCxSzMDLcyY9L-X3a1NywEe8L6f9-CL0EdKVpyr7osfg-1XjNBuRYgi8g06plKKJSfs99sX8RE6KeWO1CEIq_N7dMQpadqG8mP053oL-CqnMRQo2ESHr8LkzTAUnDy-NHYbIuA1mBxD3GCfMv4GE9hpt7sNed7JQsSnD7OZgsWXMJkNxDRC-YDeVVCBk6d1gW7Ov1-f_Vyuf_24ODtdL62QbFraXgjvpOG0N1R2Srm2o5Q7QT3pjBVeUWiN4C1rjGWeAJEt6eqzleVNQy1foIsD1yVzp-9zGE1-1MkEvT9IeaNNrr0NoIl3rVCu4aJ3oqVgKtJz11CpJIMaLtDXA-t-7kdwFuKUzfAK-vomhq3epL9airYlSlXA5ydATg8zlEnXn7UwDCZCmotmjFPVKal4TSWHVJtTKRn8cxlK9M5hvXdY7xzWe4er5NPL9p4F__3k_wC-pqLi</recordid><startdate>20190416</startdate><enddate>20190416</enddate><creator>Ponsero, Alise J</creator><creator>Hurwitz, Bonnie L</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190416</creationdate><title>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</title><author>Ponsero, Alise J ; Hurwitz, Bonnie L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>machine learning</topic><topic>metagenomic</topic><topic>Microbiology</topic><topic>sequence classification</topic><topic>viral signature</topic><topic>virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponsero, Alise J</creatorcontrib><creatorcontrib>Hurwitz, Bonnie L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponsero, Alise J</au><au>Hurwitz, Bonnie L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</atitle><jtitle>Frontiers in microbiology</jtitle><addtitle>Front Microbiol</addtitle><date>2019-04-16</date><risdate>2019</risdate><volume>10</volume><spage>806</spage><epage>806</epage><pages>806-806</pages><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>31057513</pmid><doi>10.3389/fmicb.2019.00806</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-302X
ispartof Frontiers in microbiology, 2019-04, Vol.10, p.806-806
issn 1664-302X
1664-302X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0fd748d534bd471ea5acf3d516862ecf
source PubMed Central
subjects machine learning
metagenomic
Microbiology
sequence classification
viral signature
virus
title The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Promises%20and%20Pitfalls%20of%20Machine%20Learning%20for%20Detecting%20Viruses%20in%20Aquatic%20Metagenomes&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Ponsero,%20Alise%20J&rft.date=2019-04-16&rft.volume=10&rft.spage=806&rft.epage=806&rft.pages=806-806&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2019.00806&rft_dat=%3Cproquest_doaj_%3E2231898683%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231898683&rft_id=info:pmid/31057513&rfr_iscdi=true