Loading…
The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes
Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using...
Saved in:
Published in: | Frontiers in microbiology 2019-04, Vol.10, p.806-806 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3 |
container_end_page | 806 |
container_issue | |
container_start_page | 806 |
container_title | Frontiers in microbiology |
container_volume | 10 |
creator | Ponsero, Alise J Hurwitz, Bonnie L |
description | Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them. |
doi_str_mv | 10.3389/fmicb.2019.00806 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0fd748d534bd471ea5acf3d516862ecf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0fd748d534bd471ea5acf3d516862ecf</doaj_id><sourcerecordid>2231898683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</originalsourceid><addsrcrecordid>eNpVkc9vFCEUx4nR2Gbt3ZPh6GVXfg3DXEyaarXJNvbQNsYLYeCxSzMDLcyY9L-X3a1NywEe8L6f9-CL0EdKVpyr7osfg-1XjNBuRYgi8g06plKKJSfs99sX8RE6KeWO1CEIq_N7dMQpadqG8mP053oL-CqnMRQo2ESHr8LkzTAUnDy-NHYbIuA1mBxD3GCfMv4GE9hpt7sNed7JQsSnD7OZgsWXMJkNxDRC-YDeVVCBk6d1gW7Ov1-f_Vyuf_24ODtdL62QbFraXgjvpOG0N1R2Srm2o5Q7QT3pjBVeUWiN4C1rjGWeAJEt6eqzleVNQy1foIsD1yVzp-9zGE1-1MkEvT9IeaNNrr0NoIl3rVCu4aJ3oqVgKtJz11CpJIMaLtDXA-t-7kdwFuKUzfAK-vomhq3epL9airYlSlXA5ydATg8zlEnXn7UwDCZCmotmjFPVKal4TSWHVJtTKRn8cxlK9M5hvXdY7xzWe4er5NPL9p4F__3k_wC-pqLi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231898683</pqid></control><display><type>article</type><title>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</title><source>PubMed Central</source><creator>Ponsero, Alise J ; Hurwitz, Bonnie L</creator><creatorcontrib>Ponsero, Alise J ; Hurwitz, Bonnie L</creatorcontrib><description>Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2019.00806</identifier><identifier>PMID: 31057513</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>machine learning ; metagenomic ; Microbiology ; sequence classification ; viral signature ; virus</subject><ispartof>Frontiers in microbiology, 2019-04, Vol.10, p.806-806</ispartof><rights>Copyright © 2019 Ponsero and Hurwitz. 2019 Ponsero and Hurwitz</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</citedby><cites>FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477088/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477088/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31057513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponsero, Alise J</creatorcontrib><creatorcontrib>Hurwitz, Bonnie L</creatorcontrib><title>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</title><title>Frontiers in microbiology</title><addtitle>Front Microbiol</addtitle><description>Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them.</description><subject>machine learning</subject><subject>metagenomic</subject><subject>Microbiology</subject><subject>sequence classification</subject><subject>viral signature</subject><subject>virus</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc9vFCEUx4nR2Gbt3ZPh6GVXfg3DXEyaarXJNvbQNsYLYeCxSzMDLcyY9L-X3a1NywEe8L6f9-CL0EdKVpyr7osfg-1XjNBuRYgi8g06plKKJSfs99sX8RE6KeWO1CEIq_N7dMQpadqG8mP053oL-CqnMRQo2ESHr8LkzTAUnDy-NHYbIuA1mBxD3GCfMv4GE9hpt7sNed7JQsSnD7OZgsWXMJkNxDRC-YDeVVCBk6d1gW7Ov1-f_Vyuf_24ODtdL62QbFraXgjvpOG0N1R2Srm2o5Q7QT3pjBVeUWiN4C1rjGWeAJEt6eqzleVNQy1foIsD1yVzp-9zGE1-1MkEvT9IeaNNrr0NoIl3rVCu4aJ3oqVgKtJz11CpJIMaLtDXA-t-7kdwFuKUzfAK-vomhq3epL9airYlSlXA5ydATg8zlEnXn7UwDCZCmotmjFPVKal4TSWHVJtTKRn8cxlK9M5hvXdY7xzWe4er5NPL9p4F__3k_wC-pqLi</recordid><startdate>20190416</startdate><enddate>20190416</enddate><creator>Ponsero, Alise J</creator><creator>Hurwitz, Bonnie L</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190416</creationdate><title>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</title><author>Ponsero, Alise J ; Hurwitz, Bonnie L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>machine learning</topic><topic>metagenomic</topic><topic>Microbiology</topic><topic>sequence classification</topic><topic>viral signature</topic><topic>virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponsero, Alise J</creatorcontrib><creatorcontrib>Hurwitz, Bonnie L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponsero, Alise J</au><au>Hurwitz, Bonnie L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes</atitle><jtitle>Frontiers in microbiology</jtitle><addtitle>Front Microbiol</addtitle><date>2019-04-16</date><risdate>2019</risdate><volume>10</volume><spage>806</spage><epage>806</epage><pages>806-806</pages><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using k-mer sequence signatures were published for identifying viral contigs in metagenomes. The promise of these content-based approaches is the ability to discover new viruses, with no or few known relatives. In this perspective paper, we examine the use of the content-based machine learning tool VirFinder for the identification of viral sequences in aquatic metagenomes and explore the possibility of using ecosystem-focused models targeted to marine metagenomes. We discuss the impact of the training set composition on the tool performance and the current limitation for the retrieval of low abundance viral sequences in metagenomes. We identify potential biases that could arise from machine learning approaches for viral hunting in real-world datasets and suggest possible avenues to overcome them.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>31057513</pmid><doi>10.3389/fmicb.2019.00806</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-302X |
ispartof | Frontiers in microbiology, 2019-04, Vol.10, p.806-806 |
issn | 1664-302X 1664-302X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0fd748d534bd471ea5acf3d516862ecf |
source | PubMed Central |
subjects | machine learning metagenomic Microbiology sequence classification viral signature virus |
title | The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Promises%20and%20Pitfalls%20of%20Machine%20Learning%20for%20Detecting%20Viruses%20in%20Aquatic%20Metagenomes&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Ponsero,%20Alise%20J&rft.date=2019-04-16&rft.volume=10&rft.spage=806&rft.epage=806&rft.pages=806-806&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2019.00806&rft_dat=%3Cproquest_doaj_%3E2231898683%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-cb44fd6a31ba16988d79113d41f09ac4f81e7a43725ac2f0e067092018c3551c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231898683&rft_id=info:pmid/31057513&rfr_iscdi=true |