Loading…
Unit of analysis issues in laboratory-based research
Many studies in the biomedical research literature report analyses that fail to recognise important data dependencies from multilevel or complex experimental designs. Statistical inferences resulting from such analyses are unlikely to be valid and are often potentially highly misleading. Failure to...
Saved in:
Published in: | eLife 2018-01, Vol.7 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many studies in the biomedical research literature report analyses that fail to recognise important data dependencies from multilevel or complex experimental designs. Statistical inferences resulting from such analyses are unlikely to be valid and are often potentially highly misleading. Failure to recognise this as a problem is often referred to in the statistical literature as a
(UoA) issue. Here, by analysing two example datasets in a simulation study, we demonstrate the impact of UoA issues on study efficiency and estimation bias, and highlight where errors in analysis can occur. We also provide code (written in R) as a resource to help researchers undertake their own statistical analyses. |
---|---|
ISSN: | 2050-084X 2050-084X |
DOI: | 10.7554/eLife.32486 |