Loading…

Tailoring the Composition of BaxBO3 (B = Fe, Mn) Mixed Oxides as CO or Soot Oxidation Catalysts in Simulated GDI Engine Exhaust Conditions

Mixed oxides with perovskite-type structure (ABO3) are promising catalysts for atmospheric pollution control due to their interesting and tunable physicochemical properties. In this work, two series of BaxMnO3 and BaxFeO3 (x = 1 and 0.7) catalysts were synthesized using the sol–gel method adapted to...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-04, Vol.28 (8), p.3327
Main Authors: Díaz-Verde, Álvaro, Montilla-Verdú, Salvador, Torregrosa-Rivero, Verónica, Illán-Gómez, María-José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mixed oxides with perovskite-type structure (ABO3) are promising catalysts for atmospheric pollution control due to their interesting and tunable physicochemical properties. In this work, two series of BaxMnO3 and BaxFeO3 (x = 1 and 0.7) catalysts were synthesized using the sol–gel method adapted to aqueous medium. The samples were characterized by μ-XRF, XRD, FT-IR, XPS, H2-TPR, and O2-TPD. The catalytic activity for CO and GDI soot oxidation was determined by temperature-programmed reaction experiments (CO-TPR and soot-TPR, respectively). The results reveal that a decrease in the Ba content improved the catalytic performance of both catalysts, as B0.7M-E is more active than BM-E for CO oxidation, and B0.7F-E presents higher activity than BF for soot conversion in simulated GDI engine exhaust conditions. Manganese-based perovskites (BM-E and B0.7M-E) achieve better catalytic performance than iron-based perovskite (BF) for CO oxidation reaction due to the higher generation of actives sites.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28083327