Loading…

CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation

Microglia plays an indispensable role in the pathological process of sleep deprivation (SD). Here, the potential role of microglial CX3C-chemokine receptor 1 (CX3CR1) in modulating the cognition decline during SD was evaluated in terms of microglial neuroinflammation and synaptic pruning. In this st...

Full description

Saved in:
Bibliographic Details
Published in:Chinese medical journal 2021-11, Vol.135 (2), p.205-215
Main Authors: Xin, Jiawei, Wang, Chao, Cheng, Xiaojuan, Xie, Changfu, Zhang, Qiuyang, Ke, Yilang, Huang, Xuanyu, Chen, Xiaochun, Pan, Xiaodong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microglia plays an indispensable role in the pathological process of sleep deprivation (SD). Here, the potential role of microglial CX3C-chemokine receptor 1 (CX3CR1) in modulating the cognition decline during SD was evaluated in terms of microglial neuroinflammation and synaptic pruning. In this study, we aimed to investigat whether the interference in the microglial function by the CX3CR1 knockout affects the CNS's response to SD. Middle-aged wild-type (WT) C57BL/6 and CX3CR1-/- mice were either subjected to SD or allowed normal sleep (S) for 8 h to mimic the pathophysiological changes of middle-aged people after staying up all night. After which, behavioral and histological tests were used to explore their different changes. CX3CR1 deficiency prevented SD-induced cognitive impairments, unlike WT groups. Compared with the CX3CR1-/- S group, the CX3CR1-/- SD mice reported a markedly decreased microglia and cellular oncogene fos density in the dentate gyrus (DG), decreased expression of pro-inflammatory cytokines, and decreased microglial phagocytosis-related factors, whereas increased levels of anti-inflammatory cytokines in the hippocampus and a significant increase in the density of spines of the DG were also noted. These findings suggest that CX3CR1 deficiency leads to different cerebral behaviors and responses to SD. The inflammation-attenuating activity and the related modification of synaptic pruning are possible mechanism candidates, which indicate CX3CR1 as a candidate therapeutic target for the prevention of the sleep loss-induced cognitive impairments.
ISSN:0366-6999
2542-5641
2542-5641
DOI:10.1097/CM9.0000000000001769