Loading…
Engineering artificial cross-species promoters with different transcriptional strengths
As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic...
Saved in:
Published in: | Synthetic and systems biotechnology 2025-01, Vol.10 (1), p.49-57 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-71458e91ffcb0be808a4d26227b37ffd84cf056b4d3d2481634ece25e8ea53e73 |
container_end_page | 57 |
container_issue | 1 |
container_start_page | 49 |
container_title | Synthetic and systems biotechnology |
container_volume | 10 |
creator | Zuo, Wenjie Yin, Guobin Zhang, Luyao Zhang, Weijiao Xu, Ruirui Wang, Yang Li, Jianghua Kang, Zhen |
description | As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering. |
doi_str_mv | 10.1016/j.synbio.2024.08.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_10493838cf304e13bdc7528d7aebf780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405805X24001145</els_id><doaj_id>oai_doaj_org_article_10493838cf304e13bdc7528d7aebf780</doaj_id><sourcerecordid>3100272999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-71458e91ffcb0be808a4d26227b37ffd84cf056b4d3d2481634ece25e8ea53e73</originalsourceid><addsrcrecordid>eNp9ks1u1TAQhSMEolXpGyAUiQ2bhPFPEmcDQlWBSpXYgGBnOc4411FuHGzfVn17nJtStSxY2bK_OfbMOVn2mkBJgNTvxzLczZ11JQXKSxAlAHuWnVIOVSGg-vX80f4kOw9hBAAiaF234mV2wlpKOeHtafbzch7sjOjtPOTKR2ustmrKtXchFGFBbTHki3d7F9GH_NbGXd5bY9DjHPPo1Ry0t0u0bk5lIabjIe7Cq-yFUVPA8_v1LPvx-fL7xdfi-tuXq4tP14VmLYlFQ3glsCXG6A46FCAU72lNadOxxphecG2gqjves55yQWrGUSOtUKCqGDbsLLvadHunRrl4u1f-Tjpl5fHA-UGuXekJJQHeMsGENgw4Etb1uqmo6BuFnWkEJK2Pm9Zy6PbY69SgV9MT0ac3s93Jwd1IQlhdi3pVeHev4N3vA4Yo9zZonCY1ozsEyQgAbWjbtgl9-w86uoNPMzxSLReUVSvFN-roh0fz8BsCck2CHOWWBLkmQYKQKQmp7M3jTh6K_vqegA8bgMmbG4tehmT0rLG3HnVMw7P_f-EPSx7Iqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109482359</pqid></control><display><type>article</type><title>Engineering artificial cross-species promoters with different transcriptional strengths</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Zuo, Wenjie ; Yin, Guobin ; Zhang, Luyao ; Zhang, Weijiao ; Xu, Ruirui ; Wang, Yang ; Li, Jianghua ; Kang, Zhen</creator><creatorcontrib>Zuo, Wenjie ; Yin, Guobin ; Zhang, Luyao ; Zhang, Weijiao ; Xu, Ruirui ; Wang, Yang ; Li, Jianghua ; Kang, Zhen</creatorcontrib><description>As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.</description><identifier>ISSN: 2405-805X</identifier><identifier>EISSN: 2405-805X</identifier><identifier>DOI: 10.1016/j.synbio.2024.08.003</identifier><identifier>PMID: 39224149</identifier><language>eng</language><publisher>China: Elsevier B.V</publisher><subject>Adaptability ; Bacteria ; Biology ; Broad-spectrum promoters ; Combinatorial analysis ; E coli ; Engineering ; Enzymes ; Gene expression ; Genes ; Genetic control ; Genetic diversity ; Genetic engineering ; Glucose ; Host specificity ; Initiation of transcription ; Microorganisms ; Mutation ; Original ; Plasmids ; Promoter engineering ; Promoters ; RNA polymerase ; Synthetic biology ; Toolkits ; Transcription factors ; Yeast</subject><ispartof>Synthetic and systems biotechnology, 2025-01, Vol.10 (1), p.49-57</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c391t-71458e91ffcb0be808a4d26227b37ffd84cf056b4d3d2481634ece25e8ea53e73</cites><orcidid>0000-0003-1479-3075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366860/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3109482359?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,25753,27924,27925,37012,37013,44590,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39224149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Wenjie</creatorcontrib><creatorcontrib>Yin, Guobin</creatorcontrib><creatorcontrib>Zhang, Luyao</creatorcontrib><creatorcontrib>Zhang, Weijiao</creatorcontrib><creatorcontrib>Xu, Ruirui</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Kang, Zhen</creatorcontrib><title>Engineering artificial cross-species promoters with different transcriptional strengths</title><title>Synthetic and systems biotechnology</title><addtitle>Synth Syst Biotechnol</addtitle><description>As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.</description><subject>Adaptability</subject><subject>Bacteria</subject><subject>Biology</subject><subject>Broad-spectrum promoters</subject><subject>Combinatorial analysis</subject><subject>E coli</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic control</subject><subject>Genetic diversity</subject><subject>Genetic engineering</subject><subject>Glucose</subject><subject>Host specificity</subject><subject>Initiation of transcription</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Original</subject><subject>Plasmids</subject><subject>Promoter engineering</subject><subject>Promoters</subject><subject>RNA polymerase</subject><subject>Synthetic biology</subject><subject>Toolkits</subject><subject>Transcription factors</subject><subject>Yeast</subject><issn>2405-805X</issn><issn>2405-805X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1TAQhSMEolXpGyAUiQ2bhPFPEmcDQlWBSpXYgGBnOc4411FuHGzfVn17nJtStSxY2bK_OfbMOVn2mkBJgNTvxzLczZ11JQXKSxAlAHuWnVIOVSGg-vX80f4kOw9hBAAiaF234mV2wlpKOeHtafbzch7sjOjtPOTKR2ustmrKtXchFGFBbTHki3d7F9GH_NbGXd5bY9DjHPPo1Ry0t0u0bk5lIabjIe7Cq-yFUVPA8_v1LPvx-fL7xdfi-tuXq4tP14VmLYlFQ3glsCXG6A46FCAU72lNadOxxphecG2gqjves55yQWrGUSOtUKCqGDbsLLvadHunRrl4u1f-Tjpl5fHA-UGuXekJJQHeMsGENgw4Etb1uqmo6BuFnWkEJK2Pm9Zy6PbY69SgV9MT0ac3s93Jwd1IQlhdi3pVeHev4N3vA4Yo9zZonCY1ozsEyQgAbWjbtgl9-w86uoNPMzxSLReUVSvFN-roh0fz8BsCck2CHOWWBLkmQYKQKQmp7M3jTh6K_vqegA8bgMmbG4tehmT0rLG3HnVMw7P_f-EPSx7Iqg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Zuo, Wenjie</creator><creator>Yin, Guobin</creator><creator>Zhang, Luyao</creator><creator>Zhang, Weijiao</creator><creator>Xu, Ruirui</creator><creator>Wang, Yang</creator><creator>Li, Jianghua</creator><creator>Kang, Zhen</creator><general>Elsevier B.V</general><general>KeAi Publishing Communications Ltd</general><general>KeAi Publishing</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1479-3075</orcidid></search><sort><creationdate>20250101</creationdate><title>Engineering artificial cross-species promoters with different transcriptional strengths</title><author>Zuo, Wenjie ; Yin, Guobin ; Zhang, Luyao ; Zhang, Weijiao ; Xu, Ruirui ; Wang, Yang ; Li, Jianghua ; Kang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-71458e91ffcb0be808a4d26227b37ffd84cf056b4d3d2481634ece25e8ea53e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptability</topic><topic>Bacteria</topic><topic>Biology</topic><topic>Broad-spectrum promoters</topic><topic>Combinatorial analysis</topic><topic>E coli</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic control</topic><topic>Genetic diversity</topic><topic>Genetic engineering</topic><topic>Glucose</topic><topic>Host specificity</topic><topic>Initiation of transcription</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Original</topic><topic>Plasmids</topic><topic>Promoter engineering</topic><topic>Promoters</topic><topic>RNA polymerase</topic><topic>Synthetic biology</topic><topic>Toolkits</topic><topic>Transcription factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Wenjie</creatorcontrib><creatorcontrib>Yin, Guobin</creatorcontrib><creatorcontrib>Zhang, Luyao</creatorcontrib><creatorcontrib>Zhang, Weijiao</creatorcontrib><creatorcontrib>Xu, Ruirui</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Kang, Zhen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Synthetic and systems biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Wenjie</au><au>Yin, Guobin</au><au>Zhang, Luyao</au><au>Zhang, Weijiao</au><au>Xu, Ruirui</au><au>Wang, Yang</au><au>Li, Jianghua</au><au>Kang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering artificial cross-species promoters with different transcriptional strengths</atitle><jtitle>Synthetic and systems biotechnology</jtitle><addtitle>Synth Syst Biotechnol</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>10</volume><issue>1</issue><spage>49</spage><epage>57</epage><pages>49-57</pages><issn>2405-805X</issn><eissn>2405-805X</eissn><abstract>As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.</abstract><cop>China</cop><pub>Elsevier B.V</pub><pmid>39224149</pmid><doi>10.1016/j.synbio.2024.08.003</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1479-3075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-805X |
ispartof | Synthetic and systems biotechnology, 2025-01, Vol.10 (1), p.49-57 |
issn | 2405-805X 2405-805X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_10493838cf304e13bdc7528d7aebf780 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; ScienceDirect Journals; EZB Electronic Journals Library |
subjects | Adaptability Bacteria Biology Broad-spectrum promoters Combinatorial analysis E coli Engineering Enzymes Gene expression Genes Genetic control Genetic diversity Genetic engineering Glucose Host specificity Initiation of transcription Microorganisms Mutation Original Plasmids Promoter engineering Promoters RNA polymerase Synthetic biology Toolkits Transcription factors Yeast |
title | Engineering artificial cross-species promoters with different transcriptional strengths |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20artificial%20cross-species%20promoters%20with%20different%20transcriptional%20strengths&rft.jtitle=Synthetic%20and%20systems%20biotechnology&rft.au=Zuo,%20Wenjie&rft.date=2025-01-01&rft.volume=10&rft.issue=1&rft.spage=49&rft.epage=57&rft.pages=49-57&rft.issn=2405-805X&rft.eissn=2405-805X&rft_id=info:doi/10.1016/j.synbio.2024.08.003&rft_dat=%3Cproquest_doaj_%3E3100272999%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-71458e91ffcb0be808a4d26227b37ffd84cf056b4d3d2481634ece25e8ea53e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3109482359&rft_id=info:pmid/39224149&rfr_iscdi=true |