Loading…
Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO2 Flux
The Kaya identity is a powerful index displaying the influence of individual carbon dioxide (CO2) sources on CO2 emissions. The sources are disaggregated into representative factors such as population, gross domestic product (GDP) per capita, energy intensity of the GDP, and carbon footprint of ener...
Saved in:
Published in: | Energies (Basel) 2020-11, Vol.13 (22), p.6009 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Kaya identity is a powerful index displaying the influence of individual carbon dioxide (CO2) sources on CO2 emissions. The sources are disaggregated into representative factors such as population, gross domestic product (GDP) per capita, energy intensity of the GDP, and carbon footprint of energy. However, the Kaya identity has limitations as it is merely an accounting equation and does not allow for an examination of the hidden causalities among the factors. Analyzing the causal relationships between the individual Kaya identity factors and their respective subcomponents is necessary to identify the real and relevant drivers of CO2 emissions. In this study we evaluated these causal relationships by conducting a parallel multiple mediation analysis, whereby we used the fossil fuel CO2 flux based on the Open-Source Data Inventory of Anthropogenic CO2 emissions (ODIAC). We found out that the indirect effects from the decomposed variables on the CO2 flux are significant. However, the Kaya identity factors show neither strong nor even significant mediating effects. This demonstrates that the influence individual Kaya identity factors have on CO2 directly emitted to the atmosphere is not primarily due to changes in their input factors, namely the decomposed variables. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13226009 |