Loading…

Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics

Meso-scale models for hydrogels are crucial to bridge the conformation change of polymer chains in micro-scale to the bulk deformation of hydrogel in macro-scale. In this study, we construct coarse-grain bead-spring models for polyacrylamide (PAAm) hydrogel and investigate the large deformation and...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in chemistry 2020-02, Vol.8, p.115-115
Main Authors: Lei, Jincheng, Xu, Shuai, Li, Ziqian, Liu, Zishun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-85be55693128bf63368d641fd5a9d5980432f8d9a8154dc5ac650f2c6520cd203
cites cdi_FETCH-LOGICAL-c462t-85be55693128bf63368d641fd5a9d5980432f8d9a8154dc5ac650f2c6520cd203
container_end_page 115
container_issue
container_start_page 115
container_title Frontiers in chemistry
container_volume 8
creator Lei, Jincheng
Xu, Shuai
Li, Ziqian
Liu, Zishun
description Meso-scale models for hydrogels are crucial to bridge the conformation change of polymer chains in micro-scale to the bulk deformation of hydrogel in macro-scale. In this study, we construct coarse-grain bead-spring models for polyacrylamide (PAAm) hydrogel and investigate the large deformation and fracture behavior by using Dissipative Particle Dynamics (DPD) to simulate the crosslinking process. The crosslinking simulations show that sufficiently large diffusion length of polymer beads is necessary for the formation of effective polymer. The constructed models show the reproducible realistic structure of PAAm hydrogel network, predict the reasonable crosslinking limit of water content and prove to be sufficiently large for statistical averaging. Incompressible uniaxial tension tests are performed in three different loading rates. From the nominal stress-stretch curves, it demonstrated that both the hyperelasticity and the viscoelasticity in our PAAm hydrogel models are reflected. The scattered large deformation behaviors of three PAAm hydrogel models with the same water content indicate that the mesoscale conformation of polymer network dominates the mechanical behavior in large stretch. This is because the effective chains with different initial length ratio stretch to straight at different time. We further propose a stretch criterion to measure the fracture stretch of PAAm hydrogel using the fracture stretch of C-C bonds. Using the stretch criterion, specific upper and lower limits of the fracture stretch are given for each PAAm hydrogel model. These ranges of fracture stretch agree quite well with experimental results. The study shows that our coarse-grain PAAm hydrogel models can be applied to numerous single network hydrogel systems.
doi_str_mv 10.3389/fchem.2020.00115
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1054a95e39ab414d85b2eeab5c3d4334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1054a95e39ab414d85b2eeab5c3d4334</doaj_id><sourcerecordid>2376222428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-85be55693128bf63368d641fd5a9d5980432f8d9a8154dc5ac650f2c6520cd203</originalsourceid><addsrcrecordid>eNpVkc1rGzEQxUVpaUKae09Fx17sSqMPay-FNmmbgKGBNmeh1cdaYXflSmvD_vdRbDckF42Yee83Aw-hj5QsGVPNl2A3flgCAbIkhFLxBp0DNHIBksu3L_5n6LKUB1I1QBkH8h6dMaBCrbg4R-2faedmnEa8Nrnz-NqHlAczxdr57jdmH1PGKeC71M_G5rk3Q3Qe38wup873-L7EscPXsZS4ra69x3cmT9H2FTWPVWzLB_QumL74y1O9QPc_f_y9ulmsf_-6vfq2XlguYVoo0XohZMMoqDZIxqRyktPghGmcaBThDIJyjVFUcGeFsVKQAPUFYh0QdoFuj1yXzIPe5jiYPOtkoj40Uu706TRNieCmEZ41puWUu7obvDetsMxxxnhlfT2ytrt28M76ccqmfwV9PRnjRndpr1dEAChaAZ9PgJz-7XyZ9BCL9X1vRp92RQNbSQDgoKqUHKU2p1KyD89rKNFPSetD0vopaX1Iulo-vTzv2fA_V_YI6Ialyw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376222428</pqid></control><display><type>article</type><title>Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics</title><source>PubMed Central</source><creator>Lei, Jincheng ; Xu, Shuai ; Li, Ziqian ; Liu, Zishun</creator><creatorcontrib>Lei, Jincheng ; Xu, Shuai ; Li, Ziqian ; Liu, Zishun</creatorcontrib><description>Meso-scale models for hydrogels are crucial to bridge the conformation change of polymer chains in micro-scale to the bulk deformation of hydrogel in macro-scale. In this study, we construct coarse-grain bead-spring models for polyacrylamide (PAAm) hydrogel and investigate the large deformation and fracture behavior by using Dissipative Particle Dynamics (DPD) to simulate the crosslinking process. The crosslinking simulations show that sufficiently large diffusion length of polymer beads is necessary for the formation of effective polymer. The constructed models show the reproducible realistic structure of PAAm hydrogel network, predict the reasonable crosslinking limit of water content and prove to be sufficiently large for statistical averaging. Incompressible uniaxial tension tests are performed in three different loading rates. From the nominal stress-stretch curves, it demonstrated that both the hyperelasticity and the viscoelasticity in our PAAm hydrogel models are reflected. The scattered large deformation behaviors of three PAAm hydrogel models with the same water content indicate that the mesoscale conformation of polymer network dominates the mechanical behavior in large stretch. This is because the effective chains with different initial length ratio stretch to straight at different time. We further propose a stretch criterion to measure the fracture stretch of PAAm hydrogel using the fracture stretch of C-C bonds. Using the stretch criterion, specific upper and lower limits of the fracture stretch are given for each PAAm hydrogel model. These ranges of fracture stretch agree quite well with experimental results. The study shows that our coarse-grain PAAm hydrogel models can be applied to numerous single network hydrogel systems.</description><identifier>ISSN: 2296-2646</identifier><identifier>EISSN: 2296-2646</identifier><identifier>DOI: 10.3389/fchem.2020.00115</identifier><identifier>PMID: 32158745</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Chemistry ; dissipative particle dynamics ; effective network ; fracture criterion ; large deformation behavior ; polyacrylamide hydrogel</subject><ispartof>Frontiers in chemistry, 2020-02, Vol.8, p.115-115</ispartof><rights>Copyright © 2020 Lei, Xu, Li and Liu.</rights><rights>Copyright © 2020 Lei, Xu, Li and Liu. 2020 Lei, Xu, Li and Liu</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-85be55693128bf63368d641fd5a9d5980432f8d9a8154dc5ac650f2c6520cd203</citedby><cites>FETCH-LOGICAL-c462t-85be55693128bf63368d641fd5a9d5980432f8d9a8154dc5ac650f2c6520cd203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052281/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052281/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32158745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Jincheng</creatorcontrib><creatorcontrib>Xu, Shuai</creatorcontrib><creatorcontrib>Li, Ziqian</creatorcontrib><creatorcontrib>Liu, Zishun</creatorcontrib><title>Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics</title><title>Frontiers in chemistry</title><addtitle>Front Chem</addtitle><description>Meso-scale models for hydrogels are crucial to bridge the conformation change of polymer chains in micro-scale to the bulk deformation of hydrogel in macro-scale. In this study, we construct coarse-grain bead-spring models for polyacrylamide (PAAm) hydrogel and investigate the large deformation and fracture behavior by using Dissipative Particle Dynamics (DPD) to simulate the crosslinking process. The crosslinking simulations show that sufficiently large diffusion length of polymer beads is necessary for the formation of effective polymer. The constructed models show the reproducible realistic structure of PAAm hydrogel network, predict the reasonable crosslinking limit of water content and prove to be sufficiently large for statistical averaging. Incompressible uniaxial tension tests are performed in three different loading rates. From the nominal stress-stretch curves, it demonstrated that both the hyperelasticity and the viscoelasticity in our PAAm hydrogel models are reflected. The scattered large deformation behaviors of three PAAm hydrogel models with the same water content indicate that the mesoscale conformation of polymer network dominates the mechanical behavior in large stretch. This is because the effective chains with different initial length ratio stretch to straight at different time. We further propose a stretch criterion to measure the fracture stretch of PAAm hydrogel using the fracture stretch of C-C bonds. Using the stretch criterion, specific upper and lower limits of the fracture stretch are given for each PAAm hydrogel model. These ranges of fracture stretch agree quite well with experimental results. The study shows that our coarse-grain PAAm hydrogel models can be applied to numerous single network hydrogel systems.</description><subject>Chemistry</subject><subject>dissipative particle dynamics</subject><subject>effective network</subject><subject>fracture criterion</subject><subject>large deformation behavior</subject><subject>polyacrylamide hydrogel</subject><issn>2296-2646</issn><issn>2296-2646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1rGzEQxUVpaUKae09Fx17sSqMPay-FNmmbgKGBNmeh1cdaYXflSmvD_vdRbDckF42Yee83Aw-hj5QsGVPNl2A3flgCAbIkhFLxBp0DNHIBksu3L_5n6LKUB1I1QBkH8h6dMaBCrbg4R-2faedmnEa8Nrnz-NqHlAczxdr57jdmH1PGKeC71M_G5rk3Q3Qe38wup873-L7EscPXsZS4ra69x3cmT9H2FTWPVWzLB_QumL74y1O9QPc_f_y9ulmsf_-6vfq2XlguYVoo0XohZMMoqDZIxqRyktPghGmcaBThDIJyjVFUcGeFsVKQAPUFYh0QdoFuj1yXzIPe5jiYPOtkoj40Uu706TRNieCmEZ41puWUu7obvDetsMxxxnhlfT2ytrt28M76ccqmfwV9PRnjRndpr1dEAChaAZ9PgJz-7XyZ9BCL9X1vRp92RQNbSQDgoKqUHKU2p1KyD89rKNFPSetD0vopaX1Iulo-vTzv2fA_V_YI6Ialyw</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Lei, Jincheng</creator><creator>Xu, Shuai</creator><creator>Li, Ziqian</creator><creator>Liu, Zishun</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200225</creationdate><title>Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics</title><author>Lei, Jincheng ; Xu, Shuai ; Li, Ziqian ; Liu, Zishun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-85be55693128bf63368d641fd5a9d5980432f8d9a8154dc5ac650f2c6520cd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>dissipative particle dynamics</topic><topic>effective network</topic><topic>fracture criterion</topic><topic>large deformation behavior</topic><topic>polyacrylamide hydrogel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Jincheng</creatorcontrib><creatorcontrib>Xu, Shuai</creatorcontrib><creatorcontrib>Li, Ziqian</creatorcontrib><creatorcontrib>Liu, Zishun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Jincheng</au><au>Xu, Shuai</au><au>Li, Ziqian</au><au>Liu, Zishun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics</atitle><jtitle>Frontiers in chemistry</jtitle><addtitle>Front Chem</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>8</volume><spage>115</spage><epage>115</epage><pages>115-115</pages><issn>2296-2646</issn><eissn>2296-2646</eissn><abstract>Meso-scale models for hydrogels are crucial to bridge the conformation change of polymer chains in micro-scale to the bulk deformation of hydrogel in macro-scale. In this study, we construct coarse-grain bead-spring models for polyacrylamide (PAAm) hydrogel and investigate the large deformation and fracture behavior by using Dissipative Particle Dynamics (DPD) to simulate the crosslinking process. The crosslinking simulations show that sufficiently large diffusion length of polymer beads is necessary for the formation of effective polymer. The constructed models show the reproducible realistic structure of PAAm hydrogel network, predict the reasonable crosslinking limit of water content and prove to be sufficiently large for statistical averaging. Incompressible uniaxial tension tests are performed in three different loading rates. From the nominal stress-stretch curves, it demonstrated that both the hyperelasticity and the viscoelasticity in our PAAm hydrogel models are reflected. The scattered large deformation behaviors of three PAAm hydrogel models with the same water content indicate that the mesoscale conformation of polymer network dominates the mechanical behavior in large stretch. This is because the effective chains with different initial length ratio stretch to straight at different time. We further propose a stretch criterion to measure the fracture stretch of PAAm hydrogel using the fracture stretch of C-C bonds. Using the stretch criterion, specific upper and lower limits of the fracture stretch are given for each PAAm hydrogel model. These ranges of fracture stretch agree quite well with experimental results. The study shows that our coarse-grain PAAm hydrogel models can be applied to numerous single network hydrogel systems.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>32158745</pmid><doi>10.3389/fchem.2020.00115</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-2646
ispartof Frontiers in chemistry, 2020-02, Vol.8, p.115-115
issn 2296-2646
2296-2646
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1054a95e39ab414d85b2eeab5c3d4334
source PubMed Central
subjects Chemistry
dissipative particle dynamics
effective network
fracture criterion
large deformation behavior
polyacrylamide hydrogel
title Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Large%20Deformation%20Behavior%20of%20Polyacrylamide%20Hydrogel%20Using%20Dissipative%20Particle%20Dynamics&rft.jtitle=Frontiers%20in%20chemistry&rft.au=Lei,%20Jincheng&rft.date=2020-02-25&rft.volume=8&rft.spage=115&rft.epage=115&rft.pages=115-115&rft.issn=2296-2646&rft.eissn=2296-2646&rft_id=info:doi/10.3389/fchem.2020.00115&rft_dat=%3Cproquest_doaj_%3E2376222428%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-85be55693128bf63368d641fd5a9d5980432f8d9a8154dc5ac650f2c6520cd203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376222428&rft_id=info:pmid/32158745&rfr_iscdi=true