Loading…
Adaptive fuze-warhead coordination method based on BP artificial neural network
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the pa...
Saved in:
Published in: | Defence technology 2023-11, Vol.29, p.117-133 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03 |
container_end_page | 133 |
container_issue | |
container_start_page | 117 |
container_title | Defence technology |
container_volume | 29 |
creator | Hou, Peng Pei, Yang Ge, Yu-xue |
description | The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point. |
doi_str_mv | 10.1016/j.dt.2022.12.006 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_10576f37cd8f470dbbea3a546e2dc1f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214914722002707</els_id><doaj_id>oai_doaj_org_article_10576f37cd8f470dbbea3a546e2dc1f8</doaj_id><sourcerecordid>S2214914722002707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EElXpnWP-QILXeXMrFY9KleAAZ2tjr6lDG1eO2wp-PWmLEBdOuzvSfJodxq6BJ8ChuGkTHRLBhUhAJJwXZ2wkBGRxDVl5_me_ZJO-bznnUA1aXo7Y81TjJtgdRWb7RfEe_ZJQR8o5r22HwbouWlNYOh012JOOhvvuJUIfrLHK4irqaOuPI-yd_7hiFwZXPU1-5pi9Pdy_zp7ixfPjfDZdxCpLsxBXTa1z0_C0KrGmulCoCmEKkddNXgvgAiqFgKZJCyAEwIYDQFlrohxLw9Mxm5-42mErN96u0X9Kh1YeBeff5SGjWpEEnpeFSUulK5OVXDcNYYp5VpDQCkw1sPiJpbzre0_mlwdcHvqVrdRBHvqVIOTQ72C5PVlo-HFnycteWeoUaetJhSGE_d_8DWOHgm0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive fuze-warhead coordination method based on BP artificial neural network</title><source>ScienceDirect Elsevier Science Journals</source><source>EZB Electronic Journals Library</source><creator>Hou, Peng ; Pei, Yang ; Ge, Yu-xue</creator><creatorcontrib>Hou, Peng ; Pei, Yang ; Ge, Yu-xue</creatorcontrib><description>The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point.</description><identifier>ISSN: 2214-9147</identifier><identifier>EISSN: 2214-9147</identifier><identifier>DOI: 10.1016/j.dt.2022.12.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aircraft vulnerability ; BP artificial neural network ; Damage probability ; Fuze-warhead coordination ; Initiation delay</subject><ispartof>Defence technology, 2023-11, Vol.29, p.117-133</ispartof><rights>2022 China Ordnance Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</citedby><cites>FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</cites><orcidid>0000-0002-7907-9019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214914722002707$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Pei, Yang</creatorcontrib><creatorcontrib>Ge, Yu-xue</creatorcontrib><title>Adaptive fuze-warhead coordination method based on BP artificial neural network</title><title>Defence technology</title><description>The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point.</description><subject>Aircraft vulnerability</subject><subject>BP artificial neural network</subject><subject>Damage probability</subject><subject>Fuze-warhead coordination</subject><subject>Initiation delay</subject><issn>2214-9147</issn><issn>2214-9147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kEtPwzAQhC0EElXpnWP-QILXeXMrFY9KleAAZ2tjr6lDG1eO2wp-PWmLEBdOuzvSfJodxq6BJ8ChuGkTHRLBhUhAJJwXZ2wkBGRxDVl5_me_ZJO-bznnUA1aXo7Y81TjJtgdRWb7RfEe_ZJQR8o5r22HwbouWlNYOh012JOOhvvuJUIfrLHK4irqaOuPI-yd_7hiFwZXPU1-5pi9Pdy_zp7ixfPjfDZdxCpLsxBXTa1z0_C0KrGmulCoCmEKkddNXgvgAiqFgKZJCyAEwIYDQFlrohxLw9Mxm5-42mErN96u0X9Kh1YeBeff5SGjWpEEnpeFSUulK5OVXDcNYYp5VpDQCkw1sPiJpbzre0_mlwdcHvqVrdRBHvqVIOTQ72C5PVlo-HFnycteWeoUaetJhSGE_d_8DWOHgm0</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Hou, Peng</creator><creator>Pei, Yang</creator><creator>Ge, Yu-xue</creator><general>Elsevier B.V</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7907-9019</orcidid></search><sort><creationdate>20231101</creationdate><title>Adaptive fuze-warhead coordination method based on BP artificial neural network</title><author>Hou, Peng ; Pei, Yang ; Ge, Yu-xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft vulnerability</topic><topic>BP artificial neural network</topic><topic>Damage probability</topic><topic>Fuze-warhead coordination</topic><topic>Initiation delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Pei, Yang</creatorcontrib><creatorcontrib>Ge, Yu-xue</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Defence technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Peng</au><au>Pei, Yang</au><au>Ge, Yu-xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive fuze-warhead coordination method based on BP artificial neural network</atitle><jtitle>Defence technology</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>29</volume><spage>117</spage><epage>133</epage><pages>117-133</pages><issn>2214-9147</issn><eissn>2214-9147</eissn><abstract>The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dt.2022.12.006</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7907-9019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-9147 |
ispartof | Defence technology, 2023-11, Vol.29, p.117-133 |
issn | 2214-9147 2214-9147 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_10576f37cd8f470dbbea3a546e2dc1f8 |
source | ScienceDirect Elsevier Science Journals; EZB Electronic Journals Library |
subjects | Aircraft vulnerability BP artificial neural network Damage probability Fuze-warhead coordination Initiation delay |
title | Adaptive fuze-warhead coordination method based on BP artificial neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20fuze-warhead%20coordination%20method%20based%20on%20BP%20artificial%20neural%20network&rft.jtitle=Defence%20technology&rft.au=Hou,%20Peng&rft.date=2023-11-01&rft.volume=29&rft.spage=117&rft.epage=133&rft.pages=117-133&rft.issn=2214-9147&rft.eissn=2214-9147&rft_id=info:doi/10.1016/j.dt.2022.12.006&rft_dat=%3Celsevier_doaj_%3ES2214914722002707%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |