Loading…

Adaptive fuze-warhead coordination method based on BP artificial neural network

The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the pa...

Full description

Saved in:
Bibliographic Details
Published in:Defence technology 2023-11, Vol.29, p.117-133
Main Authors: Hou, Peng, Pei, Yang, Ge, Yu-xue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03
cites cdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03
container_end_page 133
container_issue
container_start_page 117
container_title Defence technology
container_volume 29
creator Hou, Peng
Pei, Yang
Ge, Yu-xue
description The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point.
doi_str_mv 10.1016/j.dt.2022.12.006
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_10576f37cd8f470dbbea3a546e2dc1f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214914722002707</els_id><doaj_id>oai_doaj_org_article_10576f37cd8f470dbbea3a546e2dc1f8</doaj_id><sourcerecordid>S2214914722002707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EElXpnWP-QILXeXMrFY9KleAAZ2tjr6lDG1eO2wp-PWmLEBdOuzvSfJodxq6BJ8ChuGkTHRLBhUhAJJwXZ2wkBGRxDVl5_me_ZJO-bznnUA1aXo7Y81TjJtgdRWb7RfEe_ZJQR8o5r22HwbouWlNYOh012JOOhvvuJUIfrLHK4irqaOuPI-yd_7hiFwZXPU1-5pi9Pdy_zp7ixfPjfDZdxCpLsxBXTa1z0_C0KrGmulCoCmEKkddNXgvgAiqFgKZJCyAEwIYDQFlrohxLw9Mxm5-42mErN96u0X9Kh1YeBeff5SGjWpEEnpeFSUulK5OVXDcNYYp5VpDQCkw1sPiJpbzre0_mlwdcHvqVrdRBHvqVIOTQ72C5PVlo-HFnycteWeoUaetJhSGE_d_8DWOHgm0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive fuze-warhead coordination method based on BP artificial neural network</title><source>ScienceDirect Elsevier Science Journals</source><source>EZB Electronic Journals Library</source><creator>Hou, Peng ; Pei, Yang ; Ge, Yu-xue</creator><creatorcontrib>Hou, Peng ; Pei, Yang ; Ge, Yu-xue</creatorcontrib><description>The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point.</description><identifier>ISSN: 2214-9147</identifier><identifier>EISSN: 2214-9147</identifier><identifier>DOI: 10.1016/j.dt.2022.12.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aircraft vulnerability ; BP artificial neural network ; Damage probability ; Fuze-warhead coordination ; Initiation delay</subject><ispartof>Defence technology, 2023-11, Vol.29, p.117-133</ispartof><rights>2022 China Ordnance Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</citedby><cites>FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</cites><orcidid>0000-0002-7907-9019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214914722002707$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Pei, Yang</creatorcontrib><creatorcontrib>Ge, Yu-xue</creatorcontrib><title>Adaptive fuze-warhead coordination method based on BP artificial neural network</title><title>Defence technology</title><description>The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point.</description><subject>Aircraft vulnerability</subject><subject>BP artificial neural network</subject><subject>Damage probability</subject><subject>Fuze-warhead coordination</subject><subject>Initiation delay</subject><issn>2214-9147</issn><issn>2214-9147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kEtPwzAQhC0EElXpnWP-QILXeXMrFY9KleAAZ2tjr6lDG1eO2wp-PWmLEBdOuzvSfJodxq6BJ8ChuGkTHRLBhUhAJJwXZ2wkBGRxDVl5_me_ZJO-bznnUA1aXo7Y81TjJtgdRWb7RfEe_ZJQR8o5r22HwbouWlNYOh012JOOhvvuJUIfrLHK4irqaOuPI-yd_7hiFwZXPU1-5pi9Pdy_zp7ixfPjfDZdxCpLsxBXTa1z0_C0KrGmulCoCmEKkddNXgvgAiqFgKZJCyAEwIYDQFlrohxLw9Mxm5-42mErN96u0X9Kh1YeBeff5SGjWpEEnpeFSUulK5OVXDcNYYp5VpDQCkw1sPiJpbzre0_mlwdcHvqVrdRBHvqVIOTQ72C5PVlo-HFnycteWeoUaetJhSGE_d_8DWOHgm0</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Hou, Peng</creator><creator>Pei, Yang</creator><creator>Ge, Yu-xue</creator><general>Elsevier B.V</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7907-9019</orcidid></search><sort><creationdate>20231101</creationdate><title>Adaptive fuze-warhead coordination method based on BP artificial neural network</title><author>Hou, Peng ; Pei, Yang ; Ge, Yu-xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft vulnerability</topic><topic>BP artificial neural network</topic><topic>Damage probability</topic><topic>Fuze-warhead coordination</topic><topic>Initiation delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Pei, Yang</creatorcontrib><creatorcontrib>Ge, Yu-xue</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Defence technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Peng</au><au>Pei, Yang</au><au>Ge, Yu-xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive fuze-warhead coordination method based on BP artificial neural network</atitle><jtitle>Defence technology</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>29</volume><spage>117</spage><epage>133</epage><pages>117-133</pages><issn>2214-9147</issn><eissn>2214-9147</eissn><abstract>The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network (BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missile-target intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuze-warhead coordination effect is less influenced by the location of the aim point.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dt.2022.12.006</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7907-9019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-9147
ispartof Defence technology, 2023-11, Vol.29, p.117-133
issn 2214-9147
2214-9147
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_10576f37cd8f470dbbea3a546e2dc1f8
source ScienceDirect Elsevier Science Journals; EZB Electronic Journals Library
subjects Aircraft vulnerability
BP artificial neural network
Damage probability
Fuze-warhead coordination
Initiation delay
title Adaptive fuze-warhead coordination method based on BP artificial neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20fuze-warhead%20coordination%20method%20based%20on%20BP%20artificial%20neural%20network&rft.jtitle=Defence%20technology&rft.au=Hou,%20Peng&rft.date=2023-11-01&rft.volume=29&rft.spage=117&rft.epage=133&rft.pages=117-133&rft.issn=2214-9147&rft.eissn=2214-9147&rft_id=info:doi/10.1016/j.dt.2022.12.006&rft_dat=%3Celsevier_doaj_%3ES2214914722002707%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-8b9d5fb0387a9e96cac62f6259b59210218ca1afb361ea11ab011179dee5a7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true