Loading…

Network controllability solutions for computational drug repurposing using genetic algorithms

Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-01, Vol.12 (1), p.1437-16, Article 1437
Main Authors: Popescu, Victor-Bogdan, Kanhaiya, Krishna, Năstac, Dumitru Iulian, Czeizler, Eugen, Petre, Ion
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximize its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We demonstrate our algorithm on several cancer networks and on several random networks with their edges distributed according to the Erdős–Rényi, the Scale-Free, and the Small World properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-05335-3