Loading…

ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks

Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excita...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-09, Vol.10 (18), p.6495
Main Authors: Park, Junsang, Kim, Jin-kook, Jung, Sunghoon, Gil, Yeongjoon, Choi, Jong-Il, Son, Ho Sung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93
cites cdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93
container_end_page
container_issue 18
container_start_page 6495
container_title Applied sciences
container_volume 10
creator Park, Junsang
Kim, Jin-kook
Jung, Sunghoon
Gil, Yeongjoon
Choi, Jong-Il
Son, Ho Sung
description Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.
doi_str_mv 10.3390/app10186495
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_105fd1ad13da4b49991bc3567a4a5ce3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_105fd1ad13da4b49991bc3567a4a5ce3</doaj_id><sourcerecordid>2533504122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBITGMn_kAljqgQN03bHKEaY9IGEoMrkdukU0ZZRtKKj19PWBHCl2dbT89-NiGnQC8YE_QSdzugUGSp4AdklNA8i1kK-eG__JhMvN_QEAJYAXREnqflLF6Z9RbbaNm3nYnLFr03jamxM3YbLa3SbXSNXqsolKu3XusvHeNWxdOP2nQD60F7o_qgcad7t4fu3boXf0KOGmy9nvzimDzdTB_L23hxP5uXV4u4ZlnaxVmVVaoCphXyQgsmBNWU8RyKPEsbynUNueLBJVNciAZAUJVUVQENV6xAwcZkPugqixu5c-YV3ae0aOS-Yd1aoutM3WoJlDcKUAFTmFapEAKqmvEsxxR5rVnQOhu0ds4Gt76TG9u7cCAvk7ADpykkSWCdD6zaWe-dbv6mApU__5D__sG-AefCfBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533504122</pqid></control><display><type>article</type><title>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Park, Junsang ; Kim, Jin-kook ; Jung, Sunghoon ; Gil, Yeongjoon ; Choi, Jong-Il ; Son, Ho Sung</creator><creatorcontrib>Park, Junsang ; Kim, Jin-kook ; Jung, Sunghoon ; Gil, Yeongjoon ; Choi, Jong-Il ; Son, Ho Sung</creatorcontrib><description>Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10186495</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; arrhythmia ; Bradycardia ; Cardiac arrhythmia ; Cardiology ; Classification ; Contraction ; convolutional neural network ; Datasets ; Deep learning ; ECG signal multi-classification ; EKG ; Electrocardiography ; Excitation ; Fibrillation ; Flutter ; Heart ; Hospitals ; Medical equipment ; Medical research ; Neural networks ; Sinuses ; Tachycardia ; Ventricle ; Wavelet transforms ; Workflow</subject><ispartof>Applied sciences, 2020-09, Vol.10 (18), p.6495</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</citedby><cites>FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</cites><orcidid>0000-0003-1322-4698 ; 0000-0001-6617-508X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533504122/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533504122?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Park, Junsang</creatorcontrib><creatorcontrib>Kim, Jin-kook</creatorcontrib><creatorcontrib>Jung, Sunghoon</creatorcontrib><creatorcontrib>Gil, Yeongjoon</creatorcontrib><creatorcontrib>Choi, Jong-Il</creatorcontrib><creatorcontrib>Son, Ho Sung</creatorcontrib><title>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</title><title>Applied sciences</title><description>Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>arrhythmia</subject><subject>Bradycardia</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Classification</subject><subject>Contraction</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>ECG signal multi-classification</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Excitation</subject><subject>Fibrillation</subject><subject>Flutter</subject><subject>Heart</subject><subject>Hospitals</subject><subject>Medical equipment</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Sinuses</subject><subject>Tachycardia</subject><subject>Ventricle</subject><subject>Wavelet transforms</subject><subject>Workflow</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMjRBITGMn_kAljqgQN03bHKEaY9IGEoMrkdukU0ZZRtKKj19PWBHCl2dbT89-NiGnQC8YE_QSdzugUGSp4AdklNA8i1kK-eG__JhMvN_QEAJYAXREnqflLF6Z9RbbaNm3nYnLFr03jamxM3YbLa3SbXSNXqsolKu3XusvHeNWxdOP2nQD60F7o_qgcad7t4fu3boXf0KOGmy9nvzimDzdTB_L23hxP5uXV4u4ZlnaxVmVVaoCphXyQgsmBNWU8RyKPEsbynUNueLBJVNciAZAUJVUVQENV6xAwcZkPugqixu5c-YV3ae0aOS-Yd1aoutM3WoJlDcKUAFTmFapEAKqmvEsxxR5rVnQOhu0ds4Gt76TG9u7cCAvk7ADpykkSWCdD6zaWe-dbv6mApU__5D__sG-AefCfBg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Park, Junsang</creator><creator>Kim, Jin-kook</creator><creator>Jung, Sunghoon</creator><creator>Gil, Yeongjoon</creator><creator>Choi, Jong-Il</creator><creator>Son, Ho Sung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1322-4698</orcidid><orcidid>https://orcid.org/0000-0001-6617-508X</orcidid></search><sort><creationdate>20200901</creationdate><title>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</title><author>Park, Junsang ; Kim, Jin-kook ; Jung, Sunghoon ; Gil, Yeongjoon ; Choi, Jong-Il ; Son, Ho Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>arrhythmia</topic><topic>Bradycardia</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Classification</topic><topic>Contraction</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>ECG signal multi-classification</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Excitation</topic><topic>Fibrillation</topic><topic>Flutter</topic><topic>Heart</topic><topic>Hospitals</topic><topic>Medical equipment</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Sinuses</topic><topic>Tachycardia</topic><topic>Ventricle</topic><topic>Wavelet transforms</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Junsang</creatorcontrib><creatorcontrib>Kim, Jin-kook</creatorcontrib><creatorcontrib>Jung, Sunghoon</creatorcontrib><creatorcontrib>Gil, Yeongjoon</creatorcontrib><creatorcontrib>Choi, Jong-Il</creatorcontrib><creatorcontrib>Son, Ho Sung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Junsang</au><au>Kim, Jin-kook</au><au>Jung, Sunghoon</au><au>Gil, Yeongjoon</au><au>Choi, Jong-Il</au><au>Son, Ho Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</atitle><jtitle>Applied sciences</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>18</issue><spage>6495</spage><pages>6495-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10186495</doi><orcidid>https://orcid.org/0000-0003-1322-4698</orcidid><orcidid>https://orcid.org/0000-0001-6617-508X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-09, Vol.10 (18), p.6495
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_105fd1ad13da4b49991bc3567a4a5ce3
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Algorithms
arrhythmia
Bradycardia
Cardiac arrhythmia
Cardiology
Classification
Contraction
convolutional neural network
Datasets
Deep learning
ECG signal multi-classification
EKG
Electrocardiography
Excitation
Fibrillation
Flutter
Heart
Hospitals
Medical equipment
Medical research
Neural networks
Sinuses
Tachycardia
Ventricle
Wavelet transforms
Workflow
title ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECG-Signal%20Multi-Classification%20Model%20Based%20on%20Squeeze-and-Excitation%20Residual%20Neural%20Networks&rft.jtitle=Applied%20sciences&rft.au=Park,%20Junsang&rft.date=2020-09-01&rft.volume=10&rft.issue=18&rft.spage=6495&rft.pages=6495-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10186495&rft_dat=%3Cproquest_doaj_%3E2533504122%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533504122&rft_id=info:pmid/&rfr_iscdi=true