Loading…
ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks
Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excita...
Saved in:
Published in: | Applied sciences 2020-09, Vol.10 (18), p.6495 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93 |
container_end_page | |
container_issue | 18 |
container_start_page | 6495 |
container_title | Applied sciences |
container_volume | 10 |
creator | Park, Junsang Kim, Jin-kook Jung, Sunghoon Gil, Yeongjoon Choi, Jong-Il Son, Ho Sung |
description | Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model. |
doi_str_mv | 10.3390/app10186495 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_105fd1ad13da4b49991bc3567a4a5ce3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_105fd1ad13da4b49991bc3567a4a5ce3</doaj_id><sourcerecordid>2533504122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBITGMn_kAljqgQN03bHKEaY9IGEoMrkdukU0ZZRtKKj19PWBHCl2dbT89-NiGnQC8YE_QSdzugUGSp4AdklNA8i1kK-eG__JhMvN_QEAJYAXREnqflLF6Z9RbbaNm3nYnLFr03jamxM3YbLa3SbXSNXqsolKu3XusvHeNWxdOP2nQD60F7o_qgcad7t4fu3boXf0KOGmy9nvzimDzdTB_L23hxP5uXV4u4ZlnaxVmVVaoCphXyQgsmBNWU8RyKPEsbynUNueLBJVNciAZAUJVUVQENV6xAwcZkPugqixu5c-YV3ae0aOS-Yd1aoutM3WoJlDcKUAFTmFapEAKqmvEsxxR5rVnQOhu0ds4Gt76TG9u7cCAvk7ADpykkSWCdD6zaWe-dbv6mApU__5D__sG-AefCfBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533504122</pqid></control><display><type>article</type><title>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Park, Junsang ; Kim, Jin-kook ; Jung, Sunghoon ; Gil, Yeongjoon ; Choi, Jong-Il ; Son, Ho Sung</creator><creatorcontrib>Park, Junsang ; Kim, Jin-kook ; Jung, Sunghoon ; Gil, Yeongjoon ; Choi, Jong-Il ; Son, Ho Sung</creatorcontrib><description>Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10186495</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; arrhythmia ; Bradycardia ; Cardiac arrhythmia ; Cardiology ; Classification ; Contraction ; convolutional neural network ; Datasets ; Deep learning ; ECG signal multi-classification ; EKG ; Electrocardiography ; Excitation ; Fibrillation ; Flutter ; Heart ; Hospitals ; Medical equipment ; Medical research ; Neural networks ; Sinuses ; Tachycardia ; Ventricle ; Wavelet transforms ; Workflow</subject><ispartof>Applied sciences, 2020-09, Vol.10 (18), p.6495</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</citedby><cites>FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</cites><orcidid>0000-0003-1322-4698 ; 0000-0001-6617-508X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533504122/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533504122?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Park, Junsang</creatorcontrib><creatorcontrib>Kim, Jin-kook</creatorcontrib><creatorcontrib>Jung, Sunghoon</creatorcontrib><creatorcontrib>Gil, Yeongjoon</creatorcontrib><creatorcontrib>Choi, Jong-Il</creatorcontrib><creatorcontrib>Son, Ho Sung</creatorcontrib><title>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</title><title>Applied sciences</title><description>Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>arrhythmia</subject><subject>Bradycardia</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Classification</subject><subject>Contraction</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>ECG signal multi-classification</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Excitation</subject><subject>Fibrillation</subject><subject>Flutter</subject><subject>Heart</subject><subject>Hospitals</subject><subject>Medical equipment</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Sinuses</subject><subject>Tachycardia</subject><subject>Ventricle</subject><subject>Wavelet transforms</subject><subject>Workflow</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMjRBITGMn_kAljqgQN03bHKEaY9IGEoMrkdukU0ZZRtKKj19PWBHCl2dbT89-NiGnQC8YE_QSdzugUGSp4AdklNA8i1kK-eG__JhMvN_QEAJYAXREnqflLF6Z9RbbaNm3nYnLFr03jamxM3YbLa3SbXSNXqsolKu3XusvHeNWxdOP2nQD60F7o_qgcad7t4fu3boXf0KOGmy9nvzimDzdTB_L23hxP5uXV4u4ZlnaxVmVVaoCphXyQgsmBNWU8RyKPEsbynUNueLBJVNciAZAUJVUVQENV6xAwcZkPugqixu5c-YV3ae0aOS-Yd1aoutM3WoJlDcKUAFTmFapEAKqmvEsxxR5rVnQOhu0ds4Gt76TG9u7cCAvk7ADpykkSWCdD6zaWe-dbv6mApU__5D__sG-AefCfBg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Park, Junsang</creator><creator>Kim, Jin-kook</creator><creator>Jung, Sunghoon</creator><creator>Gil, Yeongjoon</creator><creator>Choi, Jong-Il</creator><creator>Son, Ho Sung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1322-4698</orcidid><orcidid>https://orcid.org/0000-0001-6617-508X</orcidid></search><sort><creationdate>20200901</creationdate><title>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</title><author>Park, Junsang ; Kim, Jin-kook ; Jung, Sunghoon ; Gil, Yeongjoon ; Choi, Jong-Il ; Son, Ho Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>arrhythmia</topic><topic>Bradycardia</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Classification</topic><topic>Contraction</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>ECG signal multi-classification</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Excitation</topic><topic>Fibrillation</topic><topic>Flutter</topic><topic>Heart</topic><topic>Hospitals</topic><topic>Medical equipment</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Sinuses</topic><topic>Tachycardia</topic><topic>Ventricle</topic><topic>Wavelet transforms</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Junsang</creatorcontrib><creatorcontrib>Kim, Jin-kook</creatorcontrib><creatorcontrib>Jung, Sunghoon</creatorcontrib><creatorcontrib>Gil, Yeongjoon</creatorcontrib><creatorcontrib>Choi, Jong-Il</creatorcontrib><creatorcontrib>Son, Ho Sung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Junsang</au><au>Kim, Jin-kook</au><au>Jung, Sunghoon</au><au>Gil, Yeongjoon</au><au>Choi, Jong-Il</au><au>Son, Ho Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks</atitle><jtitle>Applied sciences</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>18</issue><spage>6495</spage><pages>6495-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10186495</doi><orcidid>https://orcid.org/0000-0003-1322-4698</orcidid><orcidid>https://orcid.org/0000-0001-6617-508X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-09, Vol.10 (18), p.6495 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_105fd1ad13da4b49991bc3567a4a5ce3 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Algorithms arrhythmia Bradycardia Cardiac arrhythmia Cardiology Classification Contraction convolutional neural network Datasets Deep learning ECG signal multi-classification EKG Electrocardiography Excitation Fibrillation Flutter Heart Hospitals Medical equipment Medical research Neural networks Sinuses Tachycardia Ventricle Wavelet transforms Workflow |
title | ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECG-Signal%20Multi-Classification%20Model%20Based%20on%20Squeeze-and-Excitation%20Residual%20Neural%20Networks&rft.jtitle=Applied%20sciences&rft.au=Park,%20Junsang&rft.date=2020-09-01&rft.volume=10&rft.issue=18&rft.spage=6495&rft.pages=6495-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10186495&rft_dat=%3Cproquest_doaj_%3E2533504122%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-6b6bdb13eda58e93990e035718764f05ec17d53393d599f1190d2bb81f5d38a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533504122&rft_id=info:pmid/&rfr_iscdi=true |