Loading…
Machine Learning Use for Prognostic Purposes in Multiple Sclerosis
The course of multiple sclerosis begins with a relapsing-remitting phase, which evolves into a secondarily progressive form over an extremely variable period, depending on many factors, each with a subtle influence. To date, no prognostic factors or risk score have been validated to predict disease...
Saved in:
Published in: | Life (Basel, Switzerland) Switzerland), 2021-02, Vol.11 (2), p.122 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-d14a52bb537d448db3042bc6705b7ba2600fc071487e3844e85eb950466e384c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-d14a52bb537d448db3042bc6705b7ba2600fc071487e3844e85eb950466e384c3 |
container_end_page | |
container_issue | 2 |
container_start_page | 122 |
container_title | Life (Basel, Switzerland) |
container_volume | 11 |
creator | Seccia, Ruggiero Romano, Silvia Salvetti, Marco Crisanti, Andrea Palagi, Laura Grassi, Francesca |
description | The course of multiple sclerosis begins with a relapsing-remitting phase, which evolves into a secondarily progressive form over an extremely variable period, depending on many factors, each with a subtle influence. To date, no prognostic factors or risk score have been validated to predict disease course in single individuals. This is increasingly frustrating, since several treatments can prevent relapses and slow progression, even for a long time, although the possible adverse effects are relevant, in particular for the more effective drugs. An early prediction of disease course would allow differentiation of the treatment based on the expected aggressiveness of the disease, reserving high-impact therapies for patients at greater risk. To increase prognostic capacity, approaches based on machine learning (ML) algorithms are being attempted, given the failure of other approaches. Here we review recent studies that have used clinical data, alone or with other types of data, to derive prognostic models. Several algorithms that have been used and compared are described. Although no study has proposed a clinically usable model, knowledge is building up and in the future strong tools are likely to emerge. |
doi_str_mv | 10.3390/life11020122 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_10612e4e859a42a998c5ba223f3b7dfb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_10612e4e859a42a998c5ba223f3b7dfb</doaj_id><sourcerecordid>2488198817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-d14a52bb537d448db3042bc6705b7ba2600fc071487e3844e85eb950466e384c3</originalsourceid><addsrcrecordid>eNpdkVtrFDEUgAdRbKl981kGfPGhq7lfXgQtXgpbWqh9DknmzDZLNlmTGaH_3my3lq2BkJPk48vJOV33FqOPlGr0KYYRMEYEYUJedMcESb7AkuiXB_FRd1rrGrUhOBaKve6OKOWCcEmOu6-X1t-FBP0SbEkhrfrbCv2YS39d8irlOgXfX89lmyvUPqT-co5T2Ebob3yEkmuob7pXo40VTh_Xk-72-7df5z8Xy6sfF-dflgvPpJoWA2aWE-c4lQNjanAUMeK8kIg76SwRCI0eScyUBKoYA8XBaY6YELu9pyfdxd47ZLs22xI2ttybbIN5OMhlZWxp6UYwGAlMYKfQlhGrtfK8PUHoSJ0cRtdcn_eu7ew2MHhIU7HxmfT5TQp3ZpX_GKkxExI3wYdHQcm_Z6iT2YTqIUabIM_VEKYU1m3Khr7_D13nuaRWqgcKEU2watTZnvKtqLXA-JQMRmbXa3PY64a_O_zAE_yvs_Qvu4ijKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488029218</pqid></control><display><type>article</type><title>Machine Learning Use for Prognostic Purposes in Multiple Sclerosis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Seccia, Ruggiero ; Romano, Silvia ; Salvetti, Marco ; Crisanti, Andrea ; Palagi, Laura ; Grassi, Francesca</creator><creatorcontrib>Seccia, Ruggiero ; Romano, Silvia ; Salvetti, Marco ; Crisanti, Andrea ; Palagi, Laura ; Grassi, Francesca</creatorcontrib><description>The course of multiple sclerosis begins with a relapsing-remitting phase, which evolves into a secondarily progressive form over an extremely variable period, depending on many factors, each with a subtle influence. To date, no prognostic factors or risk score have been validated to predict disease course in single individuals. This is increasingly frustrating, since several treatments can prevent relapses and slow progression, even for a long time, although the possible adverse effects are relevant, in particular for the more effective drugs. An early prediction of disease course would allow differentiation of the treatment based on the expected aggressiveness of the disease, reserving high-impact therapies for patients at greater risk. To increase prognostic capacity, approaches based on machine learning (ML) algorithms are being attempted, given the failure of other approaches. Here we review recent studies that have used clinical data, alone or with other types of data, to derive prognostic models. Several algorithms that have been used and compared are described. Although no study has proposed a clinically usable model, knowledge is building up and in the future strong tools are likely to emerge.</description><identifier>ISSN: 2075-1729</identifier><identifier>EISSN: 2075-1729</identifier><identifier>DOI: 10.3390/life11020122</identifier><identifier>PMID: 33562572</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Disease ; disease progression ; Learning algorithms ; Machine learning ; Medical prognosis ; Medical treatment ; Multiple sclerosis ; Neural networks ; Patients ; Performance evaluation ; prognostication ; Review ; Risk factors ; Support vector machines</subject><ispartof>Life (Basel, Switzerland), 2021-02, Vol.11 (2), p.122</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-d14a52bb537d448db3042bc6705b7ba2600fc071487e3844e85eb950466e384c3</citedby><cites>FETCH-LOGICAL-c478t-d14a52bb537d448db3042bc6705b7ba2600fc071487e3844e85eb950466e384c3</cites><orcidid>0000-0002-0501-8803 ; 0000-0001-5292-1774 ; 0000-0002-0169-8397 ; 0000-0003-0499-8843 ; 0000-0002-9869-4420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2488029218/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2488029218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33562572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seccia, Ruggiero</creatorcontrib><creatorcontrib>Romano, Silvia</creatorcontrib><creatorcontrib>Salvetti, Marco</creatorcontrib><creatorcontrib>Crisanti, Andrea</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><creatorcontrib>Grassi, Francesca</creatorcontrib><title>Machine Learning Use for Prognostic Purposes in Multiple Sclerosis</title><title>Life (Basel, Switzerland)</title><addtitle>Life (Basel)</addtitle><description>The course of multiple sclerosis begins with a relapsing-remitting phase, which evolves into a secondarily progressive form over an extremely variable period, depending on many factors, each with a subtle influence. To date, no prognostic factors or risk score have been validated to predict disease course in single individuals. This is increasingly frustrating, since several treatments can prevent relapses and slow progression, even for a long time, although the possible adverse effects are relevant, in particular for the more effective drugs. An early prediction of disease course would allow differentiation of the treatment based on the expected aggressiveness of the disease, reserving high-impact therapies for patients at greater risk. To increase prognostic capacity, approaches based on machine learning (ML) algorithms are being attempted, given the failure of other approaches. Here we review recent studies that have used clinical data, alone or with other types of data, to derive prognostic models. Several algorithms that have been used and compared are described. Although no study has proposed a clinically usable model, knowledge is building up and in the future strong tools are likely to emerge.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Disease</subject><subject>disease progression</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical prognosis</subject><subject>Medical treatment</subject><subject>Multiple sclerosis</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>prognostication</subject><subject>Review</subject><subject>Risk factors</subject><subject>Support vector machines</subject><issn>2075-1729</issn><issn>2075-1729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkVtrFDEUgAdRbKl981kGfPGhq7lfXgQtXgpbWqh9DknmzDZLNlmTGaH_3my3lq2BkJPk48vJOV33FqOPlGr0KYYRMEYEYUJedMcESb7AkuiXB_FRd1rrGrUhOBaKve6OKOWCcEmOu6-X1t-FBP0SbEkhrfrbCv2YS39d8irlOgXfX89lmyvUPqT-co5T2Ebob3yEkmuob7pXo40VTh_Xk-72-7df5z8Xy6sfF-dflgvPpJoWA2aWE-c4lQNjanAUMeK8kIg76SwRCI0eScyUBKoYA8XBaY6YELu9pyfdxd47ZLs22xI2ttybbIN5OMhlZWxp6UYwGAlMYKfQlhGrtfK8PUHoSJ0cRtdcn_eu7ew2MHhIU7HxmfT5TQp3ZpX_GKkxExI3wYdHQcm_Z6iT2YTqIUabIM_VEKYU1m3Khr7_D13nuaRWqgcKEU2watTZnvKtqLXA-JQMRmbXa3PY64a_O_zAE_yvs_Qvu4ijKQ</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Seccia, Ruggiero</creator><creator>Romano, Silvia</creator><creator>Salvetti, Marco</creator><creator>Crisanti, Andrea</creator><creator>Palagi, Laura</creator><creator>Grassi, Francesca</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0501-8803</orcidid><orcidid>https://orcid.org/0000-0001-5292-1774</orcidid><orcidid>https://orcid.org/0000-0002-0169-8397</orcidid><orcidid>https://orcid.org/0000-0003-0499-8843</orcidid><orcidid>https://orcid.org/0000-0002-9869-4420</orcidid></search><sort><creationdate>20210205</creationdate><title>Machine Learning Use for Prognostic Purposes in Multiple Sclerosis</title><author>Seccia, Ruggiero ; Romano, Silvia ; Salvetti, Marco ; Crisanti, Andrea ; Palagi, Laura ; Grassi, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-d14a52bb537d448db3042bc6705b7ba2600fc071487e3844e85eb950466e384c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Disease</topic><topic>disease progression</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical prognosis</topic><topic>Medical treatment</topic><topic>Multiple sclerosis</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>prognostication</topic><topic>Review</topic><topic>Risk factors</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seccia, Ruggiero</creatorcontrib><creatorcontrib>Romano, Silvia</creatorcontrib><creatorcontrib>Salvetti, Marco</creatorcontrib><creatorcontrib>Crisanti, Andrea</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><creatorcontrib>Grassi, Francesca</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Life (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seccia, Ruggiero</au><au>Romano, Silvia</au><au>Salvetti, Marco</au><au>Crisanti, Andrea</au><au>Palagi, Laura</au><au>Grassi, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Use for Prognostic Purposes in Multiple Sclerosis</atitle><jtitle>Life (Basel, Switzerland)</jtitle><addtitle>Life (Basel)</addtitle><date>2021-02-05</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><spage>122</spage><pages>122-</pages><issn>2075-1729</issn><eissn>2075-1729</eissn><abstract>The course of multiple sclerosis begins with a relapsing-remitting phase, which evolves into a secondarily progressive form over an extremely variable period, depending on many factors, each with a subtle influence. To date, no prognostic factors or risk score have been validated to predict disease course in single individuals. This is increasingly frustrating, since several treatments can prevent relapses and slow progression, even for a long time, although the possible adverse effects are relevant, in particular for the more effective drugs. An early prediction of disease course would allow differentiation of the treatment based on the expected aggressiveness of the disease, reserving high-impact therapies for patients at greater risk. To increase prognostic capacity, approaches based on machine learning (ML) algorithms are being attempted, given the failure of other approaches. Here we review recent studies that have used clinical data, alone or with other types of data, to derive prognostic models. Several algorithms that have been used and compared are described. Although no study has proposed a clinically usable model, knowledge is building up and in the future strong tools are likely to emerge.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33562572</pmid><doi>10.3390/life11020122</doi><orcidid>https://orcid.org/0000-0002-0501-8803</orcidid><orcidid>https://orcid.org/0000-0001-5292-1774</orcidid><orcidid>https://orcid.org/0000-0002-0169-8397</orcidid><orcidid>https://orcid.org/0000-0003-0499-8843</orcidid><orcidid>https://orcid.org/0000-0002-9869-4420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1729 |
ispartof | Life (Basel, Switzerland), 2021-02, Vol.11 (2), p.122 |
issn | 2075-1729 2075-1729 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_10612e4e859a42a998c5ba223f3b7dfb |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Artificial intelligence Disease disease progression Learning algorithms Machine learning Medical prognosis Medical treatment Multiple sclerosis Neural networks Patients Performance evaluation prognostication Review Risk factors Support vector machines |
title | Machine Learning Use for Prognostic Purposes in Multiple Sclerosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Use%20for%20Prognostic%20Purposes%20in%20Multiple%20Sclerosis&rft.jtitle=Life%20(Basel,%20Switzerland)&rft.au=Seccia,%20Ruggiero&rft.date=2021-02-05&rft.volume=11&rft.issue=2&rft.spage=122&rft.pages=122-&rft.issn=2075-1729&rft.eissn=2075-1729&rft_id=info:doi/10.3390/life11020122&rft_dat=%3Cproquest_doaj_%3E2488198817%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-d14a52bb537d448db3042bc6705b7ba2600fc071487e3844e85eb950466e384c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488029218&rft_id=info:pmid/33562572&rfr_iscdi=true |