Loading…
Hexavalent chromium ion removal from wastewater using novel nanocomposite based on the impregnation of zero-valent iron nanoparticles into polyurethane foam
In this study, we developed a novel nanocomposite, polyurethane foam impregnated with zero-valent iron nanoparticles (PU@nZVI), for the effective removal of chromium(VI) from various water sources. The characterization of nanocomposite (PU@nZVI) was performed by XRD, SEM–EDS, TEM and FT-IR technique...
Saved in:
Published in: | Scientific reports 2024-03, Vol.14 (1), p.5387-5387, Article 5387 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we developed a novel nanocomposite, polyurethane foam impregnated with zero-valent iron nanoparticles (PU@nZVI), for the effective removal of chromium(VI) from various water sources. The characterization of nanocomposite (PU@nZVI) was performed by XRD, SEM–EDS, TEM and FT-IR techniques. Using the response surface methodology, we optimized the removal conditions, achieving an optimal pH of 2 and a dose of 0.5 g/L. The PU@nZVI demonstrated an excellent maximum adsorption capacity of 600.0 mg/g for Cr
6+
. The adsorption kinetics and isotherms were best described by the pseudo-second-order model and the Freundlich isotherm, respectively. Significantly, the nanocomposite removed 99.98% of Cr
6+
from tap water, 96.81% from industrial effluent, and 94.57% from treated sewage wastewater. Furthermore, the PU@nZVI maintained its efficiency over five adsorption–desorption cycles, highlighting its reusability. These results suggest that the PU@nZVI nanocomposite is a highly efficient and sustainable option for chromium(VI) removal in water treatment applications. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-55803-1 |