Loading…
Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning
In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches...
Saved in:
Published in: | Fluids (Basel) 2022-02, Vol.7 (2), p.62 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23 |
container_end_page | |
container_issue | 2 |
container_start_page | 62 |
container_title | Fluids (Basel) |
container_volume | 7 |
creator | Vinuesa, Ricardo Lehmkuhl, Oriol Lozano-Durán, Adrian Rabault, Jean |
description | In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance. |
doi_str_mv | 10.3390/fluids7020062 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_10aecbe109bb43048e933a13760da146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_10aecbe109bb43048e933a13760da146</doaj_id><sourcerecordid>2632866200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</originalsourceid><addsrcrecordid>eNpV0U1v1DAQBmALgUS19MjdEufA2E78cVztUqi0KhJq6dGaOJPWSxoHO9uq_560i4CePLJGj2bmZey9gI9KOfjUD4fYFQMSQMtX7EQqIaqmkeL1f_VbdlrKHgCEbZQw5oRdnw3pgW_SOOc08Djy6zjeFI5jx7exhHRP-ZGnnl8s1cDX05QThlsq_D4i3xJN_DvFsU850B2NM98R5nEh3rE3PQ6FTv-8K3Z19vly87XafftyvlnvqlCDnavOoNV9aLFTzkrtWtM7sgGFblTnrNPSNhSwDtbVxkGjDLVgm86BURh6qVbs_Oh2Cfd-yvEO86NPGP3zR8o3HvMcw0BeAFJoSYBr21pBbckphUIZDR2KWi9WdbTKA02H9oW2jT_Wz9rP-dYr4dwy4Ip9OPYvR_l1oDL7fTrkcVnXS62k1XoJ458aciolU__XFeCfovMvolO_AQVJi74</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632866200</pqid></control><display><type>article</type><title>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</title><source>Access via ProQuest (Open Access)</source><creator>Vinuesa, Ricardo ; Lehmkuhl, Oriol ; Lozano-Durán, Adrian ; Rabault, Jean</creator><creatorcontrib>Vinuesa, Ricardo ; Lehmkuhl, Oriol ; Lozano-Durán, Adrian ; Rabault, Jean</creatorcontrib><description>In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.</description><identifier>ISSN: 2311-5521</identifier><identifier>EISSN: 2311-5521</identifier><identifier>DOI: 10.3390/fluids7020062</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Active control ; Aerodynamics ; Aircraft ; Aviation ; Control methods ; Coronaviruses ; COVID-19 ; Deep learning ; Deep reinforcement learning ; Design optimization ; Efficiency ; Emissions ; Energy ; Flow control ; Friction ; Machine learning ; Numerical analysis ; Pandemics ; Reynolds number ; Simulation ; Turbulence ; Velocity</subject><ispartof>Fluids (Basel), 2022-02, Vol.7 (2), p.62</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</citedby><cites>FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</cites><orcidid>0000-0001-6570-5499 ; 0000-0002-7244-6592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632866200/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632866200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-319965$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinuesa, Ricardo</creatorcontrib><creatorcontrib>Lehmkuhl, Oriol</creatorcontrib><creatorcontrib>Lozano-Durán, Adrian</creatorcontrib><creatorcontrib>Rabault, Jean</creatorcontrib><title>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</title><title>Fluids (Basel)</title><description>In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.</description><subject>Active control</subject><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Aviation</subject><subject>Control methods</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Emissions</subject><subject>Energy</subject><subject>Flow control</subject><subject>Friction</subject><subject>Machine learning</subject><subject>Numerical analysis</subject><subject>Pandemics</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Velocity</subject><issn>2311-5521</issn><issn>2311-5521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpV0U1v1DAQBmALgUS19MjdEufA2E78cVztUqi0KhJq6dGaOJPWSxoHO9uq_560i4CePLJGj2bmZey9gI9KOfjUD4fYFQMSQMtX7EQqIaqmkeL1f_VbdlrKHgCEbZQw5oRdnw3pgW_SOOc08Djy6zjeFI5jx7exhHRP-ZGnnl8s1cDX05QThlsq_D4i3xJN_DvFsU850B2NM98R5nEh3rE3PQ6FTv-8K3Z19vly87XafftyvlnvqlCDnavOoNV9aLFTzkrtWtM7sgGFblTnrNPSNhSwDtbVxkGjDLVgm86BURh6qVbs_Oh2Cfd-yvEO86NPGP3zR8o3HvMcw0BeAFJoSYBr21pBbckphUIZDR2KWi9WdbTKA02H9oW2jT_Wz9rP-dYr4dwy4Ip9OPYvR_l1oDL7fTrkcVnXS62k1XoJ458aciolU__XFeCfovMvolO_AQVJi74</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Vinuesa, Ricardo</creator><creator>Lehmkuhl, Oriol</creator><creator>Lozano-Durán, Adrian</creator><creator>Rabault, Jean</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6570-5499</orcidid><orcidid>https://orcid.org/0000-0002-7244-6592</orcidid></search><sort><creationdate>20220201</creationdate><title>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</title><author>Vinuesa, Ricardo ; Lehmkuhl, Oriol ; Lozano-Durán, Adrian ; Rabault, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Aviation</topic><topic>Control methods</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Emissions</topic><topic>Energy</topic><topic>Flow control</topic><topic>Friction</topic><topic>Machine learning</topic><topic>Numerical analysis</topic><topic>Pandemics</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinuesa, Ricardo</creatorcontrib><creatorcontrib>Lehmkuhl, Oriol</creatorcontrib><creatorcontrib>Lozano-Durán, Adrian</creatorcontrib><creatorcontrib>Rabault, Jean</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fluids (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinuesa, Ricardo</au><au>Lehmkuhl, Oriol</au><au>Lozano-Durán, Adrian</au><au>Rabault, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</atitle><jtitle>Fluids (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>62</spage><pages>62-</pages><issn>2311-5521</issn><eissn>2311-5521</eissn><abstract>In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fluids7020062</doi><orcidid>https://orcid.org/0000-0001-6570-5499</orcidid><orcidid>https://orcid.org/0000-0002-7244-6592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-5521 |
ispartof | Fluids (Basel), 2022-02, Vol.7 (2), p.62 |
issn | 2311-5521 2311-5521 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_10aecbe109bb43048e933a13760da146 |
source | Access via ProQuest (Open Access) |
subjects | Active control Aerodynamics Aircraft Aviation Control methods Coronaviruses COVID-19 Deep learning Deep reinforcement learning Design optimization Efficiency Emissions Energy Flow control Friction Machine learning Numerical analysis Pandemics Reynolds number Simulation Turbulence Velocity |
title | Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Control%20in%20Wings%20and%20Discovery%20of%20Novel%20Approaches%20via%20Deep%20Reinforcement%20Learning&rft.jtitle=Fluids%20(Basel)&rft.au=Vinuesa,%20Ricardo&rft.date=2022-02-01&rft.volume=7&rft.issue=2&rft.spage=62&rft.pages=62-&rft.issn=2311-5521&rft.eissn=2311-5521&rft_id=info:doi/10.3390/fluids7020062&rft_dat=%3Cproquest_doaj_%3E2632866200%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632866200&rft_id=info:pmid/&rfr_iscdi=true |