Loading…

Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning

In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches...

Full description

Saved in:
Bibliographic Details
Published in:Fluids (Basel) 2022-02, Vol.7 (2), p.62
Main Authors: Vinuesa, Ricardo, Lehmkuhl, Oriol, Lozano-Durán, Adrian, Rabault, Jean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23
cites cdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23
container_end_page
container_issue 2
container_start_page 62
container_title Fluids (Basel)
container_volume 7
creator Vinuesa, Ricardo
Lehmkuhl, Oriol
Lozano-Durán, Adrian
Rabault, Jean
description In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.
doi_str_mv 10.3390/fluids7020062
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_10aecbe109bb43048e933a13760da146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_10aecbe109bb43048e933a13760da146</doaj_id><sourcerecordid>2632866200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</originalsourceid><addsrcrecordid>eNpV0U1v1DAQBmALgUS19MjdEufA2E78cVztUqi0KhJq6dGaOJPWSxoHO9uq_560i4CePLJGj2bmZey9gI9KOfjUD4fYFQMSQMtX7EQqIaqmkeL1f_VbdlrKHgCEbZQw5oRdnw3pgW_SOOc08Djy6zjeFI5jx7exhHRP-ZGnnl8s1cDX05QThlsq_D4i3xJN_DvFsU850B2NM98R5nEh3rE3PQ6FTv-8K3Z19vly87XafftyvlnvqlCDnavOoNV9aLFTzkrtWtM7sgGFblTnrNPSNhSwDtbVxkGjDLVgm86BURh6qVbs_Oh2Cfd-yvEO86NPGP3zR8o3HvMcw0BeAFJoSYBr21pBbckphUIZDR2KWi9WdbTKA02H9oW2jT_Wz9rP-dYr4dwy4Ip9OPYvR_l1oDL7fTrkcVnXS62k1XoJ458aciolU__XFeCfovMvolO_AQVJi74</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632866200</pqid></control><display><type>article</type><title>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</title><source>Access via ProQuest (Open Access)</source><creator>Vinuesa, Ricardo ; Lehmkuhl, Oriol ; Lozano-Durán, Adrian ; Rabault, Jean</creator><creatorcontrib>Vinuesa, Ricardo ; Lehmkuhl, Oriol ; Lozano-Durán, Adrian ; Rabault, Jean</creatorcontrib><description>In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.</description><identifier>ISSN: 2311-5521</identifier><identifier>EISSN: 2311-5521</identifier><identifier>DOI: 10.3390/fluids7020062</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Active control ; Aerodynamics ; Aircraft ; Aviation ; Control methods ; Coronaviruses ; COVID-19 ; Deep learning ; Deep reinforcement learning ; Design optimization ; Efficiency ; Emissions ; Energy ; Flow control ; Friction ; Machine learning ; Numerical analysis ; Pandemics ; Reynolds number ; Simulation ; Turbulence ; Velocity</subject><ispartof>Fluids (Basel), 2022-02, Vol.7 (2), p.62</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</citedby><cites>FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</cites><orcidid>0000-0001-6570-5499 ; 0000-0002-7244-6592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632866200/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632866200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-319965$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinuesa, Ricardo</creatorcontrib><creatorcontrib>Lehmkuhl, Oriol</creatorcontrib><creatorcontrib>Lozano-Durán, Adrian</creatorcontrib><creatorcontrib>Rabault, Jean</creatorcontrib><title>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</title><title>Fluids (Basel)</title><description>In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.</description><subject>Active control</subject><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Aviation</subject><subject>Control methods</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Emissions</subject><subject>Energy</subject><subject>Flow control</subject><subject>Friction</subject><subject>Machine learning</subject><subject>Numerical analysis</subject><subject>Pandemics</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Velocity</subject><issn>2311-5521</issn><issn>2311-5521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpV0U1v1DAQBmALgUS19MjdEufA2E78cVztUqi0KhJq6dGaOJPWSxoHO9uq_560i4CePLJGj2bmZey9gI9KOfjUD4fYFQMSQMtX7EQqIaqmkeL1f_VbdlrKHgCEbZQw5oRdnw3pgW_SOOc08Djy6zjeFI5jx7exhHRP-ZGnnl8s1cDX05QThlsq_D4i3xJN_DvFsU850B2NM98R5nEh3rE3PQ6FTv-8K3Z19vly87XafftyvlnvqlCDnavOoNV9aLFTzkrtWtM7sgGFblTnrNPSNhSwDtbVxkGjDLVgm86BURh6qVbs_Oh2Cfd-yvEO86NPGP3zR8o3HvMcw0BeAFJoSYBr21pBbckphUIZDR2KWi9WdbTKA02H9oW2jT_Wz9rP-dYr4dwy4Ip9OPYvR_l1oDL7fTrkcVnXS62k1XoJ458aciolU__XFeCfovMvolO_AQVJi74</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Vinuesa, Ricardo</creator><creator>Lehmkuhl, Oriol</creator><creator>Lozano-Durán, Adrian</creator><creator>Rabault, Jean</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6570-5499</orcidid><orcidid>https://orcid.org/0000-0002-7244-6592</orcidid></search><sort><creationdate>20220201</creationdate><title>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</title><author>Vinuesa, Ricardo ; Lehmkuhl, Oriol ; Lozano-Durán, Adrian ; Rabault, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Aviation</topic><topic>Control methods</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Emissions</topic><topic>Energy</topic><topic>Flow control</topic><topic>Friction</topic><topic>Machine learning</topic><topic>Numerical analysis</topic><topic>Pandemics</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinuesa, Ricardo</creatorcontrib><creatorcontrib>Lehmkuhl, Oriol</creatorcontrib><creatorcontrib>Lozano-Durán, Adrian</creatorcontrib><creatorcontrib>Rabault, Jean</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fluids (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinuesa, Ricardo</au><au>Lehmkuhl, Oriol</au><au>Lozano-Durán, Adrian</au><au>Rabault, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning</atitle><jtitle>Fluids (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>62</spage><pages>62-</pages><issn>2311-5521</issn><eissn>2311-5521</eissn><abstract>In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fluids7020062</doi><orcidid>https://orcid.org/0000-0001-6570-5499</orcidid><orcidid>https://orcid.org/0000-0002-7244-6592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-5521
ispartof Fluids (Basel), 2022-02, Vol.7 (2), p.62
issn 2311-5521
2311-5521
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_10aecbe109bb43048e933a13760da146
source Access via ProQuest (Open Access)
subjects Active control
Aerodynamics
Aircraft
Aviation
Control methods
Coronaviruses
COVID-19
Deep learning
Deep reinforcement learning
Design optimization
Efficiency
Emissions
Energy
Flow control
Friction
Machine learning
Numerical analysis
Pandemics
Reynolds number
Simulation
Turbulence
Velocity
title Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Control%20in%20Wings%20and%20Discovery%20of%20Novel%20Approaches%20via%20Deep%20Reinforcement%20Learning&rft.jtitle=Fluids%20(Basel)&rft.au=Vinuesa,%20Ricardo&rft.date=2022-02-01&rft.volume=7&rft.issue=2&rft.spage=62&rft.pages=62-&rft.issn=2311-5521&rft.eissn=2311-5521&rft_id=info:doi/10.3390/fluids7020062&rft_dat=%3Cproquest_doaj_%3E2632866200%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d7a86fcbad398269b7f9e8ca1653d9896285eca4c894790537eb085d9073acf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632866200&rft_id=info:pmid/&rfr_iscdi=true