Loading…

Chaotic Synchronization in Mobile Robots

Chaos dynamics is an interesting nonlinear effect that can be observed in many chemical, electrical, and mechanical systems. The chaos phenomenon has many applications in various branches of engineering. On the other hand, the control of mobile robots to track unpredictable chaotic trajectories has...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-12, Vol.10 (23), p.4568
Main Authors: Wu, Lili, Wang, Dongyun, Zhang, Chunwei, Mohammadzadeh, Ardashir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chaos dynamics is an interesting nonlinear effect that can be observed in many chemical, electrical, and mechanical systems. The chaos phenomenon has many applications in various branches of engineering. On the other hand, the control of mobile robots to track unpredictable chaotic trajectories has a valuable application in many security problems and military missions. The main objective in this problem is to design a controller such that the robot tracks a desired chaotic path. In this paper, the concept of synchronization of chaotic systems is studied, and a new type-3 fuzzy system (T3FLS)-based controller is designed. The T3FLS is learned by some new adaptive rules. The new learning scheme of T3FLS helps to better stabilize and synchronize. The suggested controller has a better ability to cope with high-level uncertainties. Because, in addition to the fact that the T3FLSs have better ability in an uncertain environment, the designed compensator also improves the accuracy and robustness. Several simulations show better synchronization and control accuracy of the designed controller.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10234568