Loading…
Deformation Monitoring and Analysis of Beichuan National Earthquake Ruins Museum Based on Time Series InSAR Processing
Since the Wenchuan earthquake in 2008, Old Beichuan County-town has experienced significant subsidence due to the disruption of the geological environment and the concurrent increase in precipitation. The ongoing land surface deformation poses a threat to the preservation and utilization of the Beic...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-11, Vol.16 (22), p.4249 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since the Wenchuan earthquake in 2008, Old Beichuan County-town has experienced significant subsidence due to the disruption of the geological environment and the concurrent increase in precipitation. The ongoing land surface deformation poses a threat to the preservation and utilization of the Beichuan National Earthquake Ruins Museum (BNERM), as well as to the safety of urban residents’ lives. However, the evolutionary characteristics of surface deformation in these areas remain largely unexplored. Here, we focused on the BNERM control zone and employed the small-baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technique to accurately measure land surface deformation and its spatiotemporal changes. Subsequently, we integrated this data with land cover types and precipitation to investigate the driving factors of deformation. The results indicate a slight overall elevation increase in the study area from June 2015 to May 2023, with deformation rates varying between −35.2 mm/year and 22.9 mm/year. Additionally, four unstable slopes were identified within the BNERM control zone. Our analysis indicates that surface deformation in the study area is closely linked to changes in land cover types and precipitation, exhibiting a seasonal cumulative pattern, and active geological activity may also be a cause of deformation. This study provides invaluable insights into the surface deformation characteristics of the BNERM and can serve as a scientific foundation for the protection of earthquake ruins, risk assessment, early warning, and disaster prevention measures. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16224249 |