Loading…
Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine
The vision-guided robot is intensively embedded in modern industry, but it is still a challenge to track moving objects in real time accurately. In this paper, a hybrid adaptive control scheme combined with an Extreme Learning Machine (ELM) and proportional–integral–derivative (PID) is proposed for...
Saved in:
Published in: | Machines (Basel) 2022-09, Vol.10 (9), p.782 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-2ef81ccd54527e3df50bdb12498baa676bae3f61fbae2ffcc09ef7e2b683a3b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-2ef81ccd54527e3df50bdb12498baa676bae3f61fbae2ffcc09ef7e2b683a3b43 |
container_end_page | |
container_issue | 9 |
container_start_page | 782 |
container_title | Machines (Basel) |
container_volume | 10 |
creator | Luo, Junqi Zhu, Liucun Wu, Ning Chen, Mingyou Liu, Daopeng Zhang, Zhenyu Liu, Jiyuan |
description | The vision-guided robot is intensively embedded in modern industry, but it is still a challenge to track moving objects in real time accurately. In this paper, a hybrid adaptive control scheme combined with an Extreme Learning Machine (ELM) and proportional–integral–derivative (PID) is proposed for dynamic visual tracking of the manipulator. The scheme extracts line features on the image plane based on a laser-camera system and determines an optimal control input to guide the robot, so that the image features are aligned with their desired positions. The observation and state–space equations are first determined by analyzing the motion features of the camera and the object. The system is then represented as an autoregressive moving average with extra input (ARMAX) and a valid estimation model. The adaptive predictor estimates online the relevant 3D parameters between the camera and the object, which are subsequently used to calculate the system sensitivity of the neural network. The ELM–PID controller is designed for adaptive adjustment of control parameters, and the scheme was validated on a physical robot platform. The experimental results showed that the proposed method’s vision-tracking control displayed superior performance to pure P and PID controllers. |
doi_str_mv | 10.3390/machines10090782 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_10de34eda65a468b83d12b9b36dd66b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744730365</galeid><doaj_id>oai_doaj_org_article_10de34eda65a468b83d12b9b36dd66b7</doaj_id><sourcerecordid>A744730365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-2ef81ccd54527e3df50bdb12498baa676bae3f61fbae2ffcc09ef7e2b683a3b43</originalsourceid><addsrcrecordid>eNpdUU1v2zAMNYYNWNH13qOBnd3py5J8DNJ2DZB9YV2vAiVRmTLHSmUn6P59lbkYhpEHEuTjwwNfVV1ScsV5Rz7swP2MA46UkI4ozV5VZ4yotqGKsNf_9G-ri3HckhId5Vros-rbwsN-ikesP-MhQ998XV3XD3E8QF9_x3xMcdjU9xncr1OzTMOUU18fI9Q3T1PGHdZrhDyclp9mEe-qNwH6ES9e6nn14_bmfnnXrL98XC0X68YJqqeGYdDUOd-KlinkPrTEekuZ6LQFkEpaQB4kDaWyEJwjHQaFzErNgVvBz6vVzOsTbM0-xx3k3yZBNH8GKW8M5Cm6Hg0lHrlAD7IFIbXV3FNmO8ul91JaVbjez1z7nB4POE5mmw55KPINU1S2SjDNCupqRm2gkMYhpKk8pqTHXXRpwBDLfKGEUJxw2ZYDMh-4nMYxY_grkxJzMs78bxx_Bm5ajRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716574282</pqid></control><display><type>article</type><title>Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine</title><source>Publicly Available Content (ProQuest)</source><creator>Luo, Junqi ; Zhu, Liucun ; Wu, Ning ; Chen, Mingyou ; Liu, Daopeng ; Zhang, Zhenyu ; Liu, Jiyuan</creator><creatorcontrib>Luo, Junqi ; Zhu, Liucun ; Wu, Ning ; Chen, Mingyou ; Liu, Daopeng ; Zhang, Zhenyu ; Liu, Jiyuan</creatorcontrib><description>The vision-guided robot is intensively embedded in modern industry, but it is still a challenge to track moving objects in real time accurately. In this paper, a hybrid adaptive control scheme combined with an Extreme Learning Machine (ELM) and proportional–integral–derivative (PID) is proposed for dynamic visual tracking of the manipulator. The scheme extracts line features on the image plane based on a laser-camera system and determines an optimal control input to guide the robot, so that the image features are aligned with their desired positions. The observation and state–space equations are first determined by analyzing the motion features of the camera and the object. The system is then represented as an autoregressive moving average with extra input (ARMAX) and a valid estimation model. The adaptive predictor estimates online the relevant 3D parameters between the camera and the object, which are subsequently used to calculate the system sensitivity of the neural network. The ELM–PID controller is designed for adaptive adjustment of control parameters, and the scheme was validated on a physical robot platform. The experimental results showed that the proposed method’s vision-tracking control displayed superior performance to pure P and PID controllers.</description><identifier>ISSN: 2075-1702</identifier><identifier>EISSN: 2075-1702</identifier><identifier>DOI: 10.3390/machines10090782</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive control ; adaptive visual tracking ; Algorithms ; Artificial neural networks ; Autoregressive moving average ; Cameras ; Control systems design ; Controllers ; ELM–PID control ; Feature extraction ; Kinematics ; laser-camera system ; Lasers ; Machine learning ; Machine vision ; Management science ; Masonry ; Moving object recognition ; Neural networks ; Optical tracking ; Optimal control ; Parameters ; Proportional integral derivative ; Robotics ; Robots ; Servocontrol ; Tracking control ; Velocity ; Vision ; Visual control ; visual servoing</subject><ispartof>Machines (Basel), 2022-09, Vol.10 (9), p.782</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-2ef81ccd54527e3df50bdb12498baa676bae3f61fbae2ffcc09ef7e2b683a3b43</citedby><cites>FETCH-LOGICAL-c418t-2ef81ccd54527e3df50bdb12498baa676bae3f61fbae2ffcc09ef7e2b683a3b43</cites><orcidid>0000-0002-4951-6337 ; 0000-0003-0044-5328 ; 0000-0001-5260-295X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716574282/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716574282?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Luo, Junqi</creatorcontrib><creatorcontrib>Zhu, Liucun</creatorcontrib><creatorcontrib>Wu, Ning</creatorcontrib><creatorcontrib>Chen, Mingyou</creatorcontrib><creatorcontrib>Liu, Daopeng</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liu, Jiyuan</creatorcontrib><title>Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine</title><title>Machines (Basel)</title><description>The vision-guided robot is intensively embedded in modern industry, but it is still a challenge to track moving objects in real time accurately. In this paper, a hybrid adaptive control scheme combined with an Extreme Learning Machine (ELM) and proportional–integral–derivative (PID) is proposed for dynamic visual tracking of the manipulator. The scheme extracts line features on the image plane based on a laser-camera system and determines an optimal control input to guide the robot, so that the image features are aligned with their desired positions. The observation and state–space equations are first determined by analyzing the motion features of the camera and the object. The system is then represented as an autoregressive moving average with extra input (ARMAX) and a valid estimation model. The adaptive predictor estimates online the relevant 3D parameters between the camera and the object, which are subsequently used to calculate the system sensitivity of the neural network. The ELM–PID controller is designed for adaptive adjustment of control parameters, and the scheme was validated on a physical robot platform. The experimental results showed that the proposed method’s vision-tracking control displayed superior performance to pure P and PID controllers.</description><subject>Accuracy</subject><subject>Adaptive control</subject><subject>adaptive visual tracking</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autoregressive moving average</subject><subject>Cameras</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>ELM–PID control</subject><subject>Feature extraction</subject><subject>Kinematics</subject><subject>laser-camera system</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Management science</subject><subject>Masonry</subject><subject>Moving object recognition</subject><subject>Neural networks</subject><subject>Optical tracking</subject><subject>Optimal control</subject><subject>Parameters</subject><subject>Proportional integral derivative</subject><subject>Robotics</subject><subject>Robots</subject><subject>Servocontrol</subject><subject>Tracking control</subject><subject>Velocity</subject><subject>Vision</subject><subject>Visual control</subject><subject>visual servoing</subject><issn>2075-1702</issn><issn>2075-1702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1v2zAMNYYNWNH13qOBnd3py5J8DNJ2DZB9YV2vAiVRmTLHSmUn6P59lbkYhpEHEuTjwwNfVV1ScsV5Rz7swP2MA46UkI4ozV5VZ4yotqGKsNf_9G-ri3HckhId5Vros-rbwsN-ikesP-MhQ998XV3XD3E8QF9_x3xMcdjU9xncr1OzTMOUU18fI9Q3T1PGHdZrhDyclp9mEe-qNwH6ES9e6nn14_bmfnnXrL98XC0X68YJqqeGYdDUOd-KlinkPrTEekuZ6LQFkEpaQB4kDaWyEJwjHQaFzErNgVvBz6vVzOsTbM0-xx3k3yZBNH8GKW8M5Cm6Hg0lHrlAD7IFIbXV3FNmO8ul91JaVbjez1z7nB4POE5mmw55KPINU1S2SjDNCupqRm2gkMYhpKk8pqTHXXRpwBDLfKGEUJxw2ZYDMh-4nMYxY_grkxJzMs78bxx_Bm5ajRg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Luo, Junqi</creator><creator>Zhu, Liucun</creator><creator>Wu, Ning</creator><creator>Chen, Mingyou</creator><creator>Liu, Daopeng</creator><creator>Zhang, Zhenyu</creator><creator>Liu, Jiyuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4951-6337</orcidid><orcidid>https://orcid.org/0000-0003-0044-5328</orcidid><orcidid>https://orcid.org/0000-0001-5260-295X</orcidid></search><sort><creationdate>20220901</creationdate><title>Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine</title><author>Luo, Junqi ; Zhu, Liucun ; Wu, Ning ; Chen, Mingyou ; Liu, Daopeng ; Zhang, Zhenyu ; Liu, Jiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-2ef81ccd54527e3df50bdb12498baa676bae3f61fbae2ffcc09ef7e2b683a3b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adaptive control</topic><topic>adaptive visual tracking</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autoregressive moving average</topic><topic>Cameras</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>ELM–PID control</topic><topic>Feature extraction</topic><topic>Kinematics</topic><topic>laser-camera system</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Management science</topic><topic>Masonry</topic><topic>Moving object recognition</topic><topic>Neural networks</topic><topic>Optical tracking</topic><topic>Optimal control</topic><topic>Parameters</topic><topic>Proportional integral derivative</topic><topic>Robotics</topic><topic>Robots</topic><topic>Servocontrol</topic><topic>Tracking control</topic><topic>Velocity</topic><topic>Vision</topic><topic>Visual control</topic><topic>visual servoing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Junqi</creatorcontrib><creatorcontrib>Zhu, Liucun</creatorcontrib><creatorcontrib>Wu, Ning</creatorcontrib><creatorcontrib>Chen, Mingyou</creatorcontrib><creatorcontrib>Liu, Daopeng</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liu, Jiyuan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Junqi</au><au>Zhu, Liucun</au><au>Wu, Ning</au><au>Chen, Mingyou</au><au>Liu, Daopeng</au><au>Zhang, Zhenyu</au><au>Liu, Jiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine</atitle><jtitle>Machines (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>10</volume><issue>9</issue><spage>782</spage><pages>782-</pages><issn>2075-1702</issn><eissn>2075-1702</eissn><abstract>The vision-guided robot is intensively embedded in modern industry, but it is still a challenge to track moving objects in real time accurately. In this paper, a hybrid adaptive control scheme combined with an Extreme Learning Machine (ELM) and proportional–integral–derivative (PID) is proposed for dynamic visual tracking of the manipulator. The scheme extracts line features on the image plane based on a laser-camera system and determines an optimal control input to guide the robot, so that the image features are aligned with their desired positions. The observation and state–space equations are first determined by analyzing the motion features of the camera and the object. The system is then represented as an autoregressive moving average with extra input (ARMAX) and a valid estimation model. The adaptive predictor estimates online the relevant 3D parameters between the camera and the object, which are subsequently used to calculate the system sensitivity of the neural network. The ELM–PID controller is designed for adaptive adjustment of control parameters, and the scheme was validated on a physical robot platform. The experimental results showed that the proposed method’s vision-tracking control displayed superior performance to pure P and PID controllers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/machines10090782</doi><orcidid>https://orcid.org/0000-0002-4951-6337</orcidid><orcidid>https://orcid.org/0000-0003-0044-5328</orcidid><orcidid>https://orcid.org/0000-0001-5260-295X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1702 |
ispartof | Machines (Basel), 2022-09, Vol.10 (9), p.782 |
issn | 2075-1702 2075-1702 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_10de34eda65a468b83d12b9b36dd66b7 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Adaptive control adaptive visual tracking Algorithms Artificial neural networks Autoregressive moving average Cameras Control systems design Controllers ELM–PID control Feature extraction Kinematics laser-camera system Lasers Machine learning Machine vision Management science Masonry Moving object recognition Neural networks Optical tracking Optimal control Parameters Proportional integral derivative Robotics Robots Servocontrol Tracking control Velocity Vision Visual control visual servoing |
title | Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural-PID%20Visual%20Servoing%20Tracking%20Control%20via%20Extreme%20Learning%20Machine&rft.jtitle=Machines%20(Basel)&rft.au=Luo,%20Junqi&rft.date=2022-09-01&rft.volume=10&rft.issue=9&rft.spage=782&rft.pages=782-&rft.issn=2075-1702&rft.eissn=2075-1702&rft_id=info:doi/10.3390/machines10090782&rft_dat=%3Cgale_doaj_%3EA744730365%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-2ef81ccd54527e3df50bdb12498baa676bae3f61fbae2ffcc09ef7e2b683a3b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716574282&rft_id=info:pmid/&rft_galeid=A744730365&rfr_iscdi=true |